Antifungal potency of some medicinal plants essential oils nano-emulsions to control soft rot in strawberry fruit caused by Rhizopus stolonifer

Document Type : Research Paper

Authors

Abstract

Although some of the medicinal plants essential oils were known as fungicide, but they are hard to use and have organoleptic effects to make smell and taste in crops. Nano-emulsion is a way to reduce these side effects and enhance stability as well as antimicrobial activity by increasing cellular uptake. In this investigation, the nano-emulsion of three essential oils; Mentha piperita (peppermint), Thymus daenensis (thyme) and Satureja khuzistanica (savory) were prepared and their particles size were determined. The major compound of thyme oil was thymol (68.8%) while carvacrol (72.4%) was identified as the major compound of savory. Menthol (36.5%) and menthone (33.8%) were identified as main compounds of peppermint. Three essential oils and their nano-emulsions as well as fungicide ‘tiabendazole’ were studied at various concentrations (1, 2 and 4 per1000) to control of Rhizopus stolonifer fruit rot in strawberry. Generally, nano-emulsions of essential oils showed more antifungal activity than essential oils. The nanao-emulsion of savory oil could completely suppress the rot disease of fruits at the concentration of 4:1000 and showed stronger antifungal activity than fungicides tiabendazole (85.83%). There was no significant difference in decay control, between tiabendazole and nano-emulsions of thyme and peppermint. The nano-emulsion of savory oil at concentration of 2:1000 showed a significant effect in reducing fruit decay with 50% control. Finally, nano-emulsions of essential oils especially savory nano-emulsion are suggested for natural fungicide production.

Keywords

Main Subjects


Adams, R.P. 1995. Identification of essential oil components by Gas Chromatography/Mass spectroscopy. Allured Publishing. Carol stream. IL, 404.
Ardalan, F. 2014. Formulation of nano-emulsions from essential oil of Cinnamomum zeylanicum in treatment of Helicobacter pylori infection. Master of Science thesis, Medicinal Plants and Drug Research Institute, Shahid Beheshti University. pp.72. (in Persian)
Asghari Marjanlo, A., Mostofi, Y., Shoeibi, Sh. & Fattahi, M. 2008. Effect of basil essence on controlling gray rot and postharvest quality of strawberries. Journal of Medicinal Plants, 8(1): 131-139.
Barkai-Golan, R. 2001. Postharvest Diseases of Fruits and Vegetables, Development and Control. Elsevier Science B.V., Amsterdam.
Behnam, S., Farzaneh, M., Ahmadzadeh, M. & Tehrani. A. S. 2006. Composition and antifungal activity of essential oils of Mentha piperita and Lavendula angustifolia on post-harvest phytopathogenes. Communications in agricultural and applied biological sciences. 71: 1321-1326.
Behnamian, M. & Masiha S. 2002. Strawberry. Sotodeh Publication, Tabriz, Iran. (in Persian).
Bendahou, M., Muselli, A., Grignon-Dubois, M., Benyoucef, M., Desjobert, J.M. & Bernardini, A.F. 2008. Antimicrobial activity and chemical composition of Origanum glandulosum Desf. essential oil and extract obtained by microwave extraction: Comparison with hydro distillation. Food Chemistry, 106: 132–139.
Bouchra, C., Achouri, M., Idrissi-Hassani, L.M. & Hmamochi, M. 2003. Chemical composition and antifungal activity of essential oils of seven Morcoccan Labiatea against Botrytis cinerea Pers: Fr. Journal of Ethnopharmacology, 89: 165-169.
Burt, S. 2004. Essential oils: Their antibacterial properties and potential applications in foods–A review. International Journal of Food Microbiology, 94(3), 223–253.
Carson, C.F., Hammer, K.A. & Riely, T.V. 2006. Melaleuca alternifolia (Tea Tree) oil: Rev. Antimicrobial and other medicinal properties. Clinical Microbiology, 19: 50-62.
Charles, A., Onyeani, S.O., Osunlaja, O. O. & Oworu, A.O. 2012. Evaluation of effect of aqueous plant extract in the control of storage fungi. International Journal of Science and Technology, 1(6): 72-82.
Chebli, B., Hmamouchi, M., Achouri, M. & Idrissi–Hassani, L.M. 2004. Composition and in vitro fungitoxic activity of 19 essential oils against two post-harvest pathogens. Journal of Essential Oils Research, 16: 507-511.
Cimanga, K., Kambu, K., Tona, L., Apers, S., De Bruyne, T. & Hermans, N. 2002. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. Journal of Ethnopharmacology, 79: 213-220.
Defera, D.J., Zigas, B.N. & Polission, M.G. 2002. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis sub sp. Michiganensis. Crop Protection, 22: 39-44.
Don-Pedro, K.N. 1996. Fumigant toxicity is the major rout of insecticidal activity of citrus peel essential oils. Pesticide Science, 46: 71−78.
Donsi, F., Annuanziata, M., Sessa, M. & Ferrari, G. 2011. Nano-encapsulation of essential oils to enhance their antimicrobial activity in foods. Food Science and Technology. 44: 1908–1914.
Dris, R., Niskanen, R. & Jain, S.M. 2001. Crop management and postharvest handling of horticultural products. Science Publishers, Enfield, NH.
Farzaneh, M., Ranjbar, H., Hadian, J. & Mirjalili, M.H. 2007. Biological control of some postharvest diseases of strawberry fruit by essential oils. 59th international symposium on crop protection, Ghent University, 273.
Ghaderi, L. 2014. Formulation of nano-emulsions from essential oil of Thymus daenensis in treatment of sinusitis. MSc thesis, Medicinal Plants and Drug Research Institute, Shahid Beheshti University, Tehran, pp.96 (in Persian).
Ghosh, V., Mukherjee, A. & Chandrasekaran, N. 2013. Ultrasonic emulsification of food-grade nano-emulsion formulation and evaluation of its bactericidal activity. Ultrasonics Sonochemistry, 20(1): 338-344.
Goni, P., Lopez, P., Sanchez, C., Gomez-Lus, R. Becerril, R., & Nerin, C. 2009. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chemistry, 116: 982–989.
Gyawali, R. & Ibrahim, S.A. 2014. Natural products as antimicrobial agents. Food Control. 46: 412–429.
Hamilton-Kemp, T. R., Archbold, D. D., Louchrin, J. H., Andersen, R. A., Mccrocken, C. T. & Collins, R.W. 2000. Stimulation and inhibition of fungal pathogens of plants by natural volatile phytochemicals and their analogs. Current Topics in Phytochemistry, 4:  95−104.
Hammer, K. A., Carson, C. F. & Riely, T. V. 1999. Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86: 985-990.
Harborne, J. B. & Williams, C. A. 1995. Anthocyanins and other flavonoids. Natural product research, 7: 639-657.
Huang, R., Li, G.Q., Zhang, J., Yang, L., Che, H.J., Jiang, D. H. & Huang, H. C. 2011. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phtopathology, 101(7): 859-869.
Hyldgaard, M., Mygind, T. & Meyer, R.L. 2012. “Essential oils in food preservation: mode of action, ynergies, and interactions with food matrix components”. Frontiers in Microbiology, 3: 1-12.
Juven, B. J., Kanner, J., Schaved, F. & Weisslowicz, H. 1994. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. Journal of Applied Bacteriology. 76: 626-631.
Knight, S.C., Anthony, V.M., Brady, A.M., Geenland, A.J., Heaney, S.P., Murray, D.C., Powell, K.A., Schulz, M.A., Spinks, C.A., Worthington, P.A. & Youle, D. 1997. Rationale and perspectives in the development of fungicides. Annual Review of Phytopathology, 35: 349-372.
Knobloch, L., Weigand, H., Weis, N., Schwarn, H.M. & Vigenchqw, H. 1985. Action of terpenoids on energy metabolism. pp. 429-448. In: Progress in Essential Oil Research. USA, Brunke, E.J. (ed.), Walter de Gruyter.
Lee, S.O., Choi, G.J., Jang, K.S., Lim, H.K., Cho, K.Y. & Kim, J.C. 2007. Antifungal activity of five plants essential oils as fumigant against postharvest and soilborne plant pathogenic fungi. Plant Pathology Journal, 23(2): 97-102.
Mandal, A. & Bera, A.2012. Surfactant stabilized nano-emulsion: Characterization and application in enhanced oil recovery. World Academy of Science, Engineering and Technology, 67: 21-26.
Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B. & Graves, S. 2006. Nano-emulsions: formation, structure and physical properties, Journal of Physics: Condensed Matter, 18: 35-66.
Narayanasamy, P. 2006. Postharvest pathogens and disease management. John Wiley and Sons Inc. Hoboken, New Jersey.
Ozan, M. 2003. Antifungal effects of some Turkish spice essential oils on Aspergillus niger and Botrytis cinerea growth. Agrimedia GmbH. 8: 173-175.
Paranagama, P.A., Abesekera, K.H.T., Abeywickrama, K., & Nugliyad, L. 2003. Fungicidal and anti-aflatoxigenic effects of the essential oil of Cymbopogon citratus (DC.) Stapf. (lemon-grass) against Aspergillus flavus Link. Isolated from stored rice. Letters in Applied Microbiology, 37: 86-90.
Paster, N., Menasherov, M., Ravid, U., & Juven, B. 1995. Antifungal activity of oregano and thyme essential oils applied as fumigants against fungi attacking stored grain. Journal of Food Protection, 58: 81−85.
 Pourhossein-Alamdary, M. 2012. Design formulation of Satureja  khuzistanica essential oil nano-emulsions in treatment of sinusitis. MSc thesis, Medicinal Plants and Drug Research Institute, Shahid Beheshti University, Tehran, pp.116. (in Persian).
Ranjbar, H., Farzaneh, M., Hadian, J., Mirjalili M.H. & Sharifi R. 2008. Antifungal activity of the some essential oils on postharvest diseases of strawberry fruit. Research & Reconstruction, 81: 54-60. (in Persian).
Reddy, M. V. B., Angers, P., Gosselin, A, & Arul, J. 1997. Characterization and use of essential oil from Thymus vulgaris against Botrytis cinerea and Rhizopus stolonifer in strawberry fruits. Phyltochemictry, 47: 1515-1520.
Tajkarimi, M., Ibrahim, S. & Cliver, D. 2010. Antimicrobial herb and spice compounds in food. Food Control, 21(9): 1199-1218.
Tripathi, P., Dubey, N.K. & Shukla, A.K. 2008. Use of some essential oils as post-harvest botanical fungicides in the management of grey mould of grapes caused by Botrytis cinerea. World Journal of Microbiology and Biotechnology, 24: 39–46.
Vagelas, I., Papachatzis, A., Kalorizou, H. & Wogiatzi, E. 2009. Biological control of Botrytiscinerea fruit rot (Gray mold) on strawberry and redpepper by olive oil mill wastewater. Biotechnology& Biotechnological Equipment. 23(4): 1489-1491.
Wilkinson, J.B. 1994. Harry's Cosmeticology, Longman Scientific and Technical, 588-625.

Will, F. & Kruger, E. 1999. Fungicide residues in strawberry processing. Journal of Agricultural and Food Chemistry, 47(3): 858-61.

Ziedan, E.H.E. & Farrage, E.S.H. 2008. Fumigation of peach fruits with essential oils to control postharvest decay. Research Journal of Agriculture and Biological Sciences, 4(5): 512-519.