Inhibitory effects of some isolates of Pseudomonas fluorescens on tomato root-knot nematode, Meloidogyne incognita

Document Type : Research Paper

Abstract

Root-knot nematode is one of the most important nematodes world wide, due to its damage on different species of plant. With concern to human health and environmental hazards of chemical nematicides, research to introduce new methods for management of nematode population is important. The objective of this study was to evaluate the effect of different strains of P. fluorescens in control of root-knot nematode. In this study, inhibitory effects of 9 strains of this bacterium were evaluated in vitro and under greenhouse conditions. Although the strains cause mortality in second stage juveniles in vitro, the mortality levels were significantly different in treatments. On the other hand, the tested strains had different levels of nematicidal potential. In the greenhouse conditions, more strains reduced knots formation and nematode reproduction. The strains 2 and 16 which were isolated from rhizosphere soils in Boyerahmad region were more effective than P. fluorescens CHA0, which reduced reproduction rate of the nematode significantly. According to the results none of the bacterial strains could increase the plant growth factors of tomato as compared to the control.

 


 

Keywords

Main Subjects


Abo-Elyousr, K.A., Khan, Z., El-Morsi Award M. & Abedel-Moneim, M.F. 2010. Evaluation of plant extracts and Pseudomonas spp. for control of root-knot nematode, Meloidogyne incognita on tomato. Nematropica, 40(2): 289-299.
Agrios, G.N. 2005. Plant Pathology, Fifth Edition. San Diego, CA: Elsevier Academic Press, 922 pp.
Almaghrabi, O.A., Massoud, S.I. & Abdelmoneim, T.S. 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Sciences, 20: 57-61.
Aneja, K.R., 2001. Experiments in Microbiology, Plant Pathology, Tissue Culture and Mushroom Production Technology. New Age International Limited Publishers, 3nd ed. New Delhi, India.
Ashoub, A.H. & Amara, M.T. 2010. Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. Journal of American Science, 6(10): 321-328.
Bagheri, N., Ahmadzadeh, M. & Heydari, R. 2014. Effects of Pseudomonas fluorescens strain UTPF5 on the mobility, mortality and hatching of root-knot nematode Meloidogyne javanica. Archives of Phytopathology and Plant Protection, 47(6): 744-752.
Elahinia, A. 2007. Vegetable and Cucurbit Diseases and Their Control. 2nd Ed. Guilan University Press, Rasht, Iran. 582 pp.
Hugh, R. & Leifson, E. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. Journal Bacteriology, 66: 24-26.
Hussay, R.S. & Barker, K.R. 1973. A compression of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Reporter, 57: 1025-1028.
Jacquet, M., Bongiovanni, M., Martinez, M., Verschave, P., Wajnberg, E. & Castagnone-Sereno, P. 2005. Variation in resistance to the root-knot nematode Meloidogyne incognita in tomato genotypes bearing the Mi gene. Plant Pathology, 54: 93- 99.
Jatala, P. 1985. Biological control of nematodes. pp. 303-308. In: Sasser, J.N. & Carter, C.C. (eds.), An Advanced Treatise on Meloidogyne, Volume I: Biology and Control. North Carolina State University.
Jonathan, E.I., Barker, K.R., Abdel-Alim, F.F., Vrain, T.C. & Dickson, D.W. 2000. Biological control of Meloidogyne incognita on tomato and banana with rhizoobacteria, Actinomycetes and Pasteuria penetrans. Nematropica, 30: 231-240.
Jonathan, E.I., Sandeep, A., Cannayane, I. & Umamaheswari. R. 2006. Bioefficacy of Pseudomonas fluorescens on Meloidogyne incognita in banana. Nematologia Mediterranea, 34: 19-25.
Keel, Ch., Schnider, U., Maurhofer, M., Voisard, Ch., Laville, J., Burger, U., Wirthner, Ph., Haas. D. & Defago, G. 1992. Suppression of root disease by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2, 4-diacetylphloroglucinol. Molecular plant-Microbe Interaction, 5(1): 4-13.
Khalighi S. & Khodakaramian G. 2010. Biocontrol of Meloidogyne javanica inducing olive root-knot under green-house conditions and by use of Fluorescent Pseudomonads. Iranian Journal of Plant Protection Science, 43(2): 323-332.
Khalighi S., Khodakaramian G., Tanha-Maafi Z., Hossaini S.A. & Ghasemi A. 2010. Inhibition of gall formation of Meloidogyne javanica on tomato using fluorescent pseudomonads under green-house condition. Applied Entomology and Phytopathology, 78(2): 177-198.
Khodaei Arbat, A., Taheri, A.H. Pahlevani, M.H. & Niknam, GH. R. 2009. Evaluation of tomato cultivars resistance to root-knot nematode (Meloidogyne javanica Chitwood, 1949). Journal of Plant Production, 16(1): 45-55.
Khoshkhoy, M., Sheibani, B., Rohani, E. & Tafazzoli, E. 2010. Principles of Horticulture. Shiraz University Press, Shiraz, Iran, 596 pp.
Klement, Z., Farkas, G.L. & Lovrekovich, L. 1964. Hypersensitivity reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopathology, 54: 474-477.
Majzoob, Sh., Kargar, A., Hamzehzarghani, H., Taghavi, M. & Charegani, H. 2012. The effect of the rhizobacteria on root-knot nematode (Meloidogyne javanica) on cucumber under greenhouse condition. Iranian Journal of Plant Pathology, 48: 69-84.
Maurhofer, M., Keel, C., Haas, D. & Défago, G. 1995. Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHA0 with enhanced antibiotic production. Plant Pathology, 44: 40–50.
Mohamed, Z.K., El-Sayed, S.A., Radwan, T.E.E. & Abd El-Wahab G.S. 2009. Potency evaluation of Serratia marcescens and Pseudomonas fluorescens as biocontrol agents for root-knot nematodes in Egypt. Journal of Applied Sciences Research, 4(1): 93-102. 
Mokhtari, S., Sahebani, N. & Etebarian, H.R. 2009. Study on biological control and systemic induction of peroxidase enzyme activity in tomato plant infected with root-knot nematode (Meloidogyne javanica) by Pseudomonas fluorescens CHA0 antagonist. Journal of Agriculture, 11(1): 151-161.
Sasser, J.N. & Carter, C.C. 1985. Overview of the international Meloidogyne project 1975-1984. pp. 19-24. In: Sasser, J.N. & Carter, C.C. (eds.), An Advanced Treatise on Meloidogyne, Volume I: Biology and Control. North Carolina State University.
Sankari, M.K., Jonathan, E.I., Devrajan, K. & Raguchander, T. 2012. Pseudomonas fluorescens induced systemic resistance in tomato against Meloidogyne incognita. Indian Journal of Nematology, 42(1): 5-10.
Scarpellini, M., Franzetti, L. & Galli, A. 2004. Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiology Letters, 236: 257-260.
Schaad, N.W., Jones, J.B. & Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3nd edition. The American Phytopathological Society, St. Paul, Minnesota, USA.
Siddiqui, I.A., Haas, D. & Heeb, S. 2005. Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Applied and Environmental Microbiology, 71(9): 5646-5649.