Biocontrol traits of Bacillus spp. from rhizosphere of cucumber against Sclerotinia sclerotiorum

Document Type : Research Paper

Authors

academic staff

Abstract

Sclerotinia sclerotiorum is an important plant pathogenic fungi. Biocontrol agents such as Bacillus spp are promising to manage the disease caused by this fungi. In this study, we isolated 63 strains of Bacillus spp from cucumber rhizosphere based on morphological, physiological and biochemical characteristic. The antagonistic activity of isolates were assessed using dual culture method and the producing of volatile metabolites against pathogen. The isolates Ba17، Ba24، Ba14 and Ba29b showed the most inhibitory effects against the pathogen in dual culture method. Volatile metabolites of isolates Ba21, Ba29c, Ba10b, Ba17, Ba29b, Ba9c and Ba12a, reduced mycelial growth of the pathogen 87.14, 84.85, 83.42, 82.42, 79.14, 79.14 and 77.71%, respectively and had a significant difference with control. In greenhouse trails, isolates Ba17 ،Ba21، Ba10b، Ba29c and Ba14 decreased the disease index of Sclerotinia stem rot, significantly. The isolates of Ba29c, Ba10b, Ba17, Ba29b, Ba24 were able to produce protease. The Isolates of Ba29c, Ba10b and Ba21 were able to produce surfactin. Molecular identification of isolates with antagonistic activity against this pathogen by partial sequencing of 16S rDNA gen which amplificated with specific primers fD1 and rD1 was performed. The isolates had homology with Bacillus cereus, B. licheniformis, B. endophyticus and Lysinibacillus sp.

 

Keywords


Ajibade, O.A. 2014. Isolation of Bioemulsifier Producing Marine Bacteria a Quarterly Publication of the Faculty of Science, Adeleke University, Ede, State of Osun, Nigeria. 141-144.
Asaka, O. & Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and Environmental Microbiology, 62 (11): 4081-4085.‏
Baharlouei, A., Sharifi-Sirchi, G.R. & Shahidi Bonjar, G.H. 2011. Biological control of Sclerotinia sclerotiorum (oilseed rape isolate) by an effective antagonist Streptomyces. African Journal of Biotechnology, 10 (30), 5785-5794
Cao, Y., Xu, Z., Ling, N., Yuan, Y., Yang, X., Chen, L. & Shen, Q. 2012. Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Scientia Horticulturae, 135: 32-39.
Christov, M., Kiryakov, I., Shindrova, P., Encheva, V. & Christova, M. 2004. Evaluation of new interspecific and intergeneric sunflower hybrids for resistance to Sclerotinia sclerotiorum. In Proc. 16th Int. Sunfl. Conf., Fargo, North Dakota, USA, Int. Sunfl. Assoc., Paris, France, 693-698.
Czaczyk, K., Trojanowska, K. & Stachowiak, B. 2002. Inhibition of ergosterol biosynthesis in fungal plant pathogens by Bacillus sp. Polish Journal of Environmental Studies, 11 (5): 593-597.
Dashti A., Jadaon M.M., Abdulsamad, A.M & Dashti, H.M. 2009. Heat treatment of bacteria: A Simple Method of DNA Extraction for Molecular Techniques. Kuwait Medical Journal, 41 (2): 117-122.
Dhingra, O.D. & Sinclair, J.B. 1995. 'Basic Plant Pathology Methods'. CRC Press: USA, pp: 287-296, 390-391.
Feignier, C., Besson, F. & Michel, G. 1995. Studies on lipopeptide biosynthesis by Bacillus subtilis: isolation and characterization of iturin−, surfactin+ mutants. FEMS Microbiology Letters, 127(1‐2): 11-15.
Fernandes, P.A.V., Arruda, I.R.d. Santos, A.F.A.B.D., Araújo, A.A. d., Maior, A.M.S. & Ximenes, E.A. 2007. Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug-resistant bacteria. Brazilian Journal of Microbiology, 38(4): 704-709.
Fiddaman, P.J. & Rossall, S. 1993. The production of antifungal volatiles by Bacillus subtilis. Journal of Applied
Bacteriology, 74: 119-126.
Fravel, D.R. 1988. Role of antibiosis in the biocontrol of plant diseases. Annual Review of Phytopathology,26(1): 75-91.‏
Gullino, M.L., Camponogara, A., Gasparrini, G., Rizzo, V., Clini, C. & Garibaldi, A. 2003. Replacing methyl bromide for soil disinfestations the Italian experience and implications for other countries. Plant Disease, 87:1012-1021.
Haran, S., Schickler, H., & Chet, I. 1996. Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology, 142: 2321-2331.
He, H., Silo-Suh, L.A., Handelsman, J. & Clardy, J. 1994. Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Letters, 35(16):2499-2502.‏
Hu, X., D.P., Roberts, L., Xie, J.E., Maul, C., Yu, Y., Li, M., Jiang, X., Liao, Z., Che & X. Liao. 2014. Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field. Biological Control, 70: 54-64.
Karimi, A., Rohani, H., Zafari, D., & Taghinasab, M. 2007. Biological control carnation vascular wilt disease caused by Fusarium oxysporum f. sp. Dianthi with Bacillus spp and Psedomonas isolated from the rhizosphere of Carnation. Journal of Water and Soil Science, 11 (41): 309-320. (Persian)
Kilian, M., Steiner U., Krebs, B., Junge, H., Schmiedeknecht, G. & Hain, R. 2000. FZB24® Bacillus subtilis mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer, 100 (1): 72-93.
Kim, D.S., Weller, D.M. & Cook, R.J. 1997. Population dynamics of Bacillus sp. L324-92R12 and Pseudomonas fluorescens 2-79RN10 in the rhizosphere of wheat. Phytopathology, 87(5): 559-564.
Kraus, J. & Loper, J.E. 1990. Biocontrol of Pythium damping-off of cucumber by Pseudomonas fluorescens Pf-5: mechanistic studies. Plant Growth Promoting Rhizobacteria. The Second International Work Shop on Plant Growth-Promoting Rhizobacteria. Interlaken, Switzerland, 172-175.‏
Leeman, M., Van Pelt, J.A., Hendrickx, M.J., Scheffer, R.J., Bakker, P.A.H.M. & Schippers, B. 1995. Biocontrol of Fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology, 85(10): 1301-1305.‏
Lewis, J.A. 1991. Formulation and delivery systems of biocontrol agent with emphasis on fungi. In: Keister D.L., Cregan, P.B. (eds). The rhizosphere and plant growth. Kluwer. Rotterdam, 279-287.
Mahadtanapuk, S., Sanguansermsri, M., Cutler, R.W., Sardsud V. & Anuntalabhochai, S. 2007. Control of anthracnose caused by Colletotrichum musae on Curcuma alismatifolia Gagnep using antagonistic Bacillus spp. Journal Articles of Biological Science, 2 (2): 54-61.
Maurhofer, M., Keel, C., Schnider, U., Voisard, C., Haas, D. & Defago, G. 1992. Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHAO on its disease suppressive capacity. Phytopathology, 82:190-195.
Minuto, A., Spadaro, D., Garibaldi, A. & Gullino, M.L. 2006. Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Protection, 25 (5): 468–475
Montealegre, J.R., Reyes, R., Perez, L.M., Herrera, R., Silva, P. & Besoain, X. 2003. Selection of bio-antagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electronic Journal of Biotechnology, 6(2): 115-127.
Moore-Landecker, E. & Stotzky, G. 1973. Morphological abnormalities of fungi induced by volatile microbial metabolites. Mycologia, 65: 519–530.
Park, C.S. 1989. Identification of some bacteria from paddy antagonistic  to several rice fungal pathogens. Phytopathology, 138(3):189-208.
Papavizas, G.C. & Lewis, J.A. 1981. Induction and augmentation of microbial antagonists for the control of soil-borne plant pathogens. In: Papavizas G. C, editor. Biological control in crop production. Totowa, NJ: Allanheld and Osmum, 305 – 322.
Paulitz, T.C. & Bélanger, R.R. 2001. Biological control in greenhouse systems. Annual Review of Phytopathology, 39(1): 103-133.
Rostami, S., Maleki, M., & Shahriari, D. 2013. The use of Bacillus amyloliquefaciens to control of Sclerotinia Stem Rot (Sclerotinia Sclerotiorum) of cucumber. International Journal of Farming and Allied Sciences, 2 (22): 965-970.
Singh, J. & Deveral, BJ. 1984. Bacillus subtilis as a control agent against fungal pathogens of citrus fruit. Transaction of British Mycological Society, 83(3): 484-490.
Shoda, M. 2000. Bacterial control of plant disease. Journal of Bioscience and Bioengineering, 89(6): 515-521.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28: 2731-2739.
Vos, P., Garrity, G., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A. & Whitman, W. (Eds.). 2011. Bergey's Manual of Systematic Bacteriology: Volume 3: The Firmicutes. Springer Science & Business Media, 22-92.
Weisburg, W.G., Barns, S.M., Pelletier, D.A. & Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2): 697-703.‏
Weller, D.M. 1988. Biological control of soil-born plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26: 379-407.
Wu, Y.C., Raza, W. & Huang, Q.W. 2014. Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot. Journal of Microbiology and Biotechnology, 24(10): 1327-13.