Study on mathematical model for temperature–dependent development of Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinelidae)

Document Type : Research Paper

Author

Iranian Research Institute of Plant Protection. Agricultural, Research, Education and Extension Organization (ARREO), Tehran, Iran

Abstract

The mealybug destroyer, Cryptoleamus montrouzieri Mulsant is known as the most effective biological control agent of the mealybugs. The effect of temperature on developmental rate of C. montrouzieri was studied. Developmental times of incubation period, larval, pupal, and overall immature stages of the mealybug destroyer were recoreded at temperatures ranging 15–35°C, 50–60% RH, and a photoperiod of (L:D) 16:8h. According to the ANOVA, temperature affected significantly developmental time of the mealybug destroyer at 1% of probability level and increasing temperature lead to decreasing developmental time. In order to describe temperature–dependent development and to estmate related thermal indices, developmental rate of C. montrouzieri modeled as a function of temperature using mathematical models. The results showed Briere–2 and Lactin non–linear models had the best performance to predict developmental rate of C. montrouzieri in the studied temperature range. According to the non–linear models, thermal tolerance for development of the overall immature stages of the mealybug destroyer was 10.40–33.56°C and optimal temperature was 30.08°C. Obtained results can be used for improving environmental conditions of the mealybug destroyer mass rearing instectariums and biological control programs.

Keywords


Abdollahi Ahi, Gh., Afshari, A., Baniameri, V., Dadpour Moghanloo, H., Asadeh, Gh. & Yazdanian, M. 2012. Functional response of Cryptolaemus montrouzieri Mulsant (Col.; Coccinellidae) to citrus mealybug, Planococcus citri (Risso) (Hom., Pseudococcidae) under laboratory conditions. Plant Protection, 35(1): 1–14.
Aghajanzadeh, S., Halagisani, M. & Gholamian, E. 2016. Study on efficiency of Cryptolaemous montrouzieri Mulsant for control of Pulvinaria aurantii Cockerell. Plant Pests Research, 5(4): 1–12.
Akaike, H. 1974. A new look at the statistical model identifcation. IEEE Trans. Autom. Control AC 19: 716–723. Analytis, S. 1977. Uber die relation zwischen biologischer entwicklung und temperature bei phytopathogenen Pilzen. Phytopatholgy and Zoology, 90: 64–76.
Al–Khateeb, N. & Raie, A. 2001. A study of some biological parameters of the predator Cryptolaemus montrouzieri Mulsant introduced to Planococcus citri (Risso) in Syria, and estimate of its predation rate in the laboratory. Plant Protection, 19(2): 131–134.
Angilletta, M.J. 2006. Estimating and comparing thermal performance curves. Journal of Thermal Biology, 31: 541–545.
Badii, M.H., McMurtry, G.A. & Flores, A.E. 1999. Rates of development, survival, and predation of immature stages of Phytoseiulus longipes (Acari: phytoseiidae). Experimental and Applied Acarology, 23: 611–621.
Banerjee, B. 1993. Tea production and processing. Oxford and IBH publishing. 336 pp.
Behadad, H. 2002. Introductory entomology and important plant pests in Iran, Yadbood Pub., Isfahan, Iran. 848 pp.
Bodenheimer, F.S. 1951. Citrus entomology in the Middle East with special refrence to Egypt, Iran, Iraq, Palestine, Syria, Turkey. W. junk, The Hague. 663 pp.
Briere, J.F., Pracros, P., Roux, A.Y.le. & Pierre, J.S. 1999. A novel rate model of temperature–dependent development for arthropods. Environmental Entomology, 28: 22–29.
Burnham, K.P. & Anderson, D.R. 2002. Model selection and multimodel inference: a practical information–theoretic approach. Springer, New York.
Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P. & Makauer, M. 1974. Temperature requirements of some aphids and their parasites. Journal of Applied Ecology, 11: 431–438.
Casey, T.M. 1992. Biophysical ecology and heat exchange in isect. American Zoologist, 32: 225–237.
Charles, J.G. 1993. A survey of mealybugs and their natural enemies in horticultural crops in North Island, New Zealand, with implications for biological control. Biocontrol Science and Technology. 3(4): 405–418.
Clausen, C.P. 1978. Introduced parasites and predators of arthropod pests and weeds: a world review. Agr. Handb. No. 48, U. S. Dept. Agric., Wash., D.C. 545 pp.
Copland, M.J.W., Perera, H.A.S. & Heidari, M. 1993. Influence of host plant on the biocontrol of glasshouse mealybug. Bulletin OILB SROP. 16(8): 44–47.
Coppel, H.C. & Mertins, J.W. 1977. Biological insect pest suppression. Germany, Springer–Verlag, 314 pp.
Cossins, A.R. & Bowler, K. 1987. Temperature biology of animals. Chapman and Hall, London.
De Bach, P. 1973. Biological control of insect pest and weed. Chapman and Hall, New York. 434 pp.
DeClerq, P. & Degheele, D. 1992. Development and survival of Podisus maculiventris (Say) and Podisus sagitta (Fab.) (Het.: Pentatomidae) at various constant temperatures. Canadian Entomologists, 124: 125–133.
Ehsan, S. 1998. View about Predator Cryptolaemus montrouzieri Mulsant. http:// www.arabscientist.org/ english/page/11/.
Gautam, R.D. 1996. Reports on the use of coccinellid predators for the management of hibiscus (pink) mealybug in the Caribbean. Centeno (Trinidad and Tobago): Ministry of Agriculture, Land and Marine Resources Central Experiment Station. vp. (07774/H10.G3)
Ghadimi–Moazeni, M. 2004. Study on biology and probability of mass rearing of Cryptolaemus montrouzieri Mulsant, predatory coccinellid of citrus mealy bug, M.Sc. dissertation. Islamic Azad University, Tehran Researches and Science Branch, 67 pp. (In Persian).
Gharizadeh, E. 2002. Comparison of biological characters of predatory coccinellid, Cryptolaemus montrouzieri Mulsant on Pulvinaria aurantii Cockerell and Planococcus citri (Risso) in laboratory conditions, M.Sc. dissertation. Isfahan University of Technology, 102 pp. (In Persian with English summary).
Ghorbanian, S. 2010. Biology and efficacy of Cryptoleamus montrouzieri Mulsant (Coleoptera: Coccinellidae) against Planococcus citri (Risso) (Hemiptera: Pseudococcidae) on Solenostemon scutellarioides (L.) Codd (Coleus blumeri (Bentham)), M.Sc. Thesis. University of Tehran. 97 pp. (In Persian with English summary ).
Ghorbanian, S., Ranjbar Aghdam, H. & Ghajarieh, H. 2014. Efficacy of Cryptolaemus montrouzieri in Biological Control of Planococcus citri on Solenostemon scutellarioides under greenhouse Conditions. Iranian Journal of Plant Protection Science, 44(2): 235–241.
Ghorbanian, S., Ranjbar Aghdam, H., Ghajarieh, H. Malkeshi, S.H. 2011. Life Cycle and Population Growth Parameters of Cryptolaemus montrouzieri Mulsant (Col.: Coccinellidae) Reared on Planococcus citri (Risso) (Hem.: Pseudococcidae) on Coleus. Journal of the Entomological Research Society, 13(2): 53–59.
Gilbert, N. & Raworth, D.A. 1996. Insects and temperature, a general theory. The Canadian Entomologist, 128: 1–13.
Gordon, R. D. 1985. The Coccinellidae (Coleptera) of America, North of Mexico. Journal of New York Entomological Society, 93: 1–912.
Harcourt, D.C. & Yee, J.M. 1982. Polynomial algorithm for predicting the duration of insect life stages. Environmental Entomology, 11: 581–584.
Heidari, M. & Copland, M.J.W. 1993. Honeydew: a food resource or arrestant for the mealybug predator Cryptolaemus montrouzieri. Entomophaga, 38(1): 63–68.
Howell, J.F. & L.G. Neven. 2000. Physiological development time and zero development temperature of the codling moth (Lepidoptera: Tortricidae). Environmental Entomology, 29: 766–772.
Huffaker, C.B. & Gutierrez, A.p. 1999. Ecological Entomology, Jhon Wiley & Sons, Inc., USA.
Huffaker, C.B., Berryman, A. & Turchin, P. 1999. Dynamics and regulation of insect populations, In: C.B. Huffaker and A.P. Gutierrez (eds.), Ecological Entomology, 2nd ed. Wiley, New York. 269–305.
Izhevsky, S.S. & Orlinsky, A.D. 1988. Life history of the imported Scymmus (Nephus) reunioni (Col.: Cocinellidae) predator of mealybugs. Entomophaga, 33(1): 101–114.
Jervis, M.A. & Copland, M.J.W. 1996. The life cycle, In: M. Jervis & N. Kidd (eds.), Insect natural enemies; practical approaches to their study and evaluation. Chapman and Hall, London. 63–161.
Khodaman, A. 1993. Biological study of mealybug Nipaecoccus viridis and possibility of its biological control, by crypt ladybird and other available coccinellids in Khuzestan province (southwest Iran). M.Sc. Thesis. Shahid Chamran University.
Kontodimas, D.C., Eliopoulos, P.A., Stathas, G.J. & Economou, L.P. 2004. Comparative temperature–  dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various non–linear models using specific criteria. Environmental Entomology, 33: 1–11.
Lactin, D.J., Holliday, N.J., Johnson, D.L. & Craigen, R. 1995. Improved rate model of temperature–dependent development by arthropods. Environmental Entomology, 24: 68–73.
Lee, J.H. & Elliott, N.C. 1998. Comparison of developmental response to temperatutre in Aphelinus asychis(Walker) from two different geographic regions. Southwest Entomology, 23: 77–82.
Logan, J. A., Wollkind, D. J., Hoyt, S.C. & Tanigoshi, L.K. 1976. An analytical model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology, 5: 1133–1140.
Malkeshi, S.H. & Heidari, H. 2006. Chryptolaemus montrouzieri The predator of mealy bugs, Ministry of Jihad–e–Agriculture, Agriculture Research & Education Organization, Plant Pests & Disease Research Institute, Biological Control Research Department, 16 pp.
Mani, M. & Krishnamoorthy, A. 1999a. Predatory potential and development of the Australian ladybird beetle, Cryptolaemus montrouzieri  Muls. (Col.:Coccinellidae) on the spiraling whitefly, Aleurodicus disperses. Russel Entomology, 24 (2): 197–198.
Mani, M. & Krishnamoorthy, A. 1999b. Maconellicoccus hirsutus on acid lime in India. Insect Environment. 5(2): 73–74.
Mani, M. & Krishnamoorthy, A. 2001. Suppression of Maconellicoccus hirsutus (Green) on guava. Insect Environment, 6(4): 125.
Meyerdik, D.E., French, G.V., Hart, W.G., & chandler, L.D. 1979. Citrus mealybug effect of pesticide residue on adults of the natural enemy complex. Journal of Economic Entomology, 72: 893–895.
Murray, D.A. 1978. Effect of fruit fly sprays in the abundance of the abundance of the citrus mealybug Planococcus citri (Risso), and its predator, Cryptolaemus montrouzieri Mulsant on Passion fruit in south eastern Quensland. Journal of Agriculture and Animal Science, 35(2): 143–147.
Ranjbar Aghdam, H., Fathipour, Y., Radjabi, Gh. & Rezapanah, M. 2009. Temperature–dependent development and temperature thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Environmental Entomology, 38(3): 885–895.
Raspi, A. 1988. Preliminary notes on Entomophagus insect of Saisselia oleae and Lichtensia vibroni in olive groves of the Tuscan and West Ligurian cost. Frustula Entomolica, 113–128.
Rodriguez–Saona, C. & Miller, J.C. 1999. Temperature–dependent effect on development, mortality, and growth of Hippodamia convergens (Coleoptera: Coccinellidae). Environmental Entomology, 28: 518–522.
Roy, M., Brodeur, J. & Cloutier, C. 2002. Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acari: Tetranychidae). Environmental Entomology, 31(1): 177–187.
Sinclair, B.J., Vernon, P., Jacoklok, C. & Chown, S.L. 2003. Insect at low temperatures: An ecological perspective. Trend in Ecology and Evaluation, 18: 250–257.
Stoetzel, M.B.1989. Comman names of insects and related organisms. Entomological Society of America, 195 pp.
Vucetich, J.A., Peterson, R.O. & Schaefer, C.L. 2002. The effect of prey and predator densities on wolf predation. Ecology, 83: 3003–3013.
Wagner, T.L., Wu, H.I., Sharpe, P.J. H., Schoolfield, R.M. & Coulson, R.N. 1984. Modeling insect development rates: A literature review and application of a biophysical model. Annals of the Entomological Society of America, 77: 208–225.
Yang, X., Shen, M., Xiong, J. & Guo, Z. 1996. Approaches to enhance the effectiveness of biocontrol of Panonychus citri (Acari: Tetranychidae) with Stethorus punctillum (Coleoptera: Coccinellidae) in  citrus orchards in Guizhou. Systematic and Applied Acarology, 1: 21–27.
Zamani, A.A., Talebi, A.A., Fathipour, Y. & Baniameri, V. 2006. Temperature dependent functional response of two aphid parasitoids, Aphidius colemani and Aphidius matricariae (Hymenoptera: Aphidiae), on the cotton aphid. Journal Pest Science, 79: 183–188.