Identification of antagonistic microorganisms associated with strawberry phyllosphere and their evaluation in the biological control of Botrytis cinerea

Document Type : Research Paper

Authors

1 Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft, Iran

2 Department of Plant Protection, Kerman Agricultural and Natural Resources Research and Education Center, Tehran, Iran

3 Dept. of Plant Protection, Faculty of Agriculture, University of Jiroft

10.22092/bcpp.2023.360936.328

Abstract

Gray mold, caused by Botrytis cinerea is one of the most important diseases in strawberry, causing pre– and postharvest fruit rot. One of the safe and healthy ways to reduce this disease is biocontrol and the use of biological control agents. In this study, using culture–based methods, 268 bacterial strains, and 136 fungal isolates, were isolated and purified from the phyllosphere of strawberry plants in the greenhouse and field in Jiroft city. The antagonistic effect of the isolates against the pathogen B. cinerea was investigated using dual culture and investigation of the inhibition zone, and the effect of volatile compounds under in vitro conditions, as well as the antifungal properties of the antagonistic bacteria on strawberry fruit. Identification of the selected bacterial and fungal strains was made by polymerase chain reaction, respectively, by determining the nucleotide sequence of a part of the 16S–rDNA gene and its region. The results showed that among the examined isolates, bacterial isolates UJB1, UJB3, UJB4, UJB10, UJB5, UJB6, UJB7, UJB11, UJB2, UJB8 and UJB9 and fungal isolates UJF1300, UJF1301, UJF1302, UJF1303, UJF1304, UJF1305 had an effective inhibitory effect against B. cinerea and their volatile compounds reduced pathogenic mycelium growth. In evaluating the antifungal impact of bacterial isolates on strawberry fruit, bacterial isolates UJB8, UJB2, UJB11, UJB6, UJB5, UJB10, UJB4, and UJB1 significantly increased the disease index caused by B. cinerea compared to They reduced the witness. According to morphological and molecular data, bacterial isolates belonging to the genera Delftia (isolates UJB1, UJB3, UJB4, UJB10), Bacillus (isolates UJB5, UJB6, UJB7, UJB11, and UJB2) and Stenotrophomonas (isolates UJB8 and UJB9) and fungal isolates belonging to Albifimbria verrucaria, Aspergillus terreus, Leptosphaerulina australis, Pilidium lythri, Pseudozyma flocculosa, and Seimatosporium pistaciae species.

Keywords

Main Subjects


Avis, T.J. & Bélanger R.R. 2001. Specificity and Mode of Action of the Antifungal Fatty Acid cis–9 Heptadecenoic Acid Produced by Pseudozyma flocculosa. Applied and Environmental Microbiology Journal, 67(2): 956–960.
Ayoubi, N., Soleimani, M.J., Zare, R. 2016. Pilidium concavum, causing tan–brown rot on strawberry in Iran. Journal of Plant Pathology, 667–669. (In Persian with English summary)
Baker, C.J., Stavely, J.R., Mock, N. 1985. Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Disease, 69(9): 770–772.
Bensidhoum, L.B., Abdelwahab. R., Nassira, T., Nabila, K., Meriem, K & Elhafid, N. 2015. Biological control of Botrytis cinerea by Bacillus sp. Strain S7LiBe under abiotic stress. International Journal of Scientific Research in Science and Technology, 1(6): 7–14.
Bruisson, S., Zufferey, M.L.,’Haridon, F., Trutmann, E., Anand, A., Dutartre, A., De Vrieze, M. & Weisskopf, L. 2019. Endophytes and epiphytes from the grapevine leaf microbiome as potential biocontrol agents against phytopathogens. Frontiers in Microbiology, 10: 2726.
Buxdorf, K., Rahat, I., Gafni, A. & Levy, M. 2013. The epiphytic fungus Pseudozyma aphidis induces jasmonic acid–and salicylic acid/nonexpressor of PR1–independent local and systemic resistance. Plant physiology, 161(4): 2014–2022.
Cenis, J.L. 1992. Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Research, 20(9): 2380.
Chen, Y., Ran, S.F., Dai, D.Q., Wang, Y., Hyde, K.D., Wu, Y.M. & Jiang, Y.L. 2016. Mycosphere Essays 2. Myrothecium Mycosphere, 7(1): 64–80.
Chacón, F.I., Sineli, P.E., Mansilla, F.I., Pereyra, M.M., Diaz, M.A., Volentini, S.I., Poehlein, A., Meinhardt, F., Daniel, R. & Dib JR 2022. Native Cultivable Bacteria from the Blueberry Microbiome as Novel Potential Biocontrol Agents. Microorganisms, 10(5): 969.
Crous, P.W., Summerell, B.A., Swart, L., Denman, S., Taylor, J.E., Bezuidenhout, C.M., Palm, M.E., Marincowitz, S. & Groenewald, J.Z 2011. Fungal pathogens of Proteaceae. Persoonia–Molecular Phylogeny and Evolution of Fungi, 27(1): 20–45.
Crous, P. W., Wingfield, M. J., Schumacher, R. K., Summerell, B. A., Giraldo, A., Gené, J., Guarro, J., Wanasinghe, D. N., Hyde, K. D., Camporesi, E. & Groenewald, J. Z. 2014. Fungal Planet description sheets: 281–319. Persoonia: Molecular Phylogeny and Evolution of Fungi, 33(1): 212–289.
da Silveira, A.P.D., Iório, R.D.P.F., Marcos, F.C.C., Fernandes, A.O., de Souza, S.A.C.D., Kuramae, E.E. & Cipriano, M.A.P. 2019. Exploitation of new endophytic bacteria and their ability to promote sugarcane growth and nitrogen nutrition. Antonie van Leeuwenhoek, 112(2): 283–295.
Dashti, A.A., Jadaon, M.M., Abdulsamad, A.M. & Dashti, H.M. 2009. Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Medical Journal, 41(2): 117–122.
Dehghani, K., Amirmijani, A.R. & Pordel, A. 2022. Fungal species associated with leaf spot on mango trees in Iran. Mycologia Iranica, 9(1): 75–83.
de Hoog, G.S., Guarro, J., Gené, J. & Figueras, M.J 2000. Atlas of clinical fungi (No. Ed. 2). Centraalbureau voor Schimmelcultures (CBS).
Dennis, C. & Webster, J. 1971. Antagonistic properties of species–groups of Trichoderma: I. Production of non–volatile antibiotics. Transactions of the British Mycological Society, 57(1): 25, IN3.
Donmez, M.F., Esitken, A., Yildiz, H. & Ercisli, S. 2011. Biocontrol of Botrytis cinerea on strawberry fruit by plant growth promoting bacteria. Journal of Animal and Plant Sciences, 21(4): 758–763.
Ellis, M.B. 1971. Dematiaceous hyphomycetes. Dematiaceous hyphomycetes.
Elżbieta, P., Agnieszka, J. & Marzena, B.W. 2018. Antagonistic activity of selected fungi of the soil environment of carrot. Plant Soil and Environment, 64(2): 58–63.
Ershad, D.J. 2009. Fungi of Iran. Dept. Botany, Publi. No. 10 pp 277. Ministry of Agriculture and Natural Resources, Teheran, Iran.
Feng, B., Chen, D., Jin, R., Li, E. & Li, P. 2022. Bioactivities evaluation of an endophytic bacterial strain Bacillus velezensis JRX–YG39 inhabiting wild grape. BMC microbiology, 22(1): 1–9.
Fokkema, N.J. 1973. The role of saprophytic fungi in antagonism against Drechslera sorokiniana (Helminthosporium sativum) on agar plates and on rye leaves with pollen. Physiological Plant Pathology, 3(2): 195–205.
Halo, B.A., Al–Yahyai, R.A & Al–Sadi, A.M. 2018. Aspergillus terreus inhibits growth and induces morphological abnormalities in Pythium aphanidermatum and suppresses Pythium–induced damping–off of cucumber. Frontiers in microbiology, 9: 95.
Hammami, W., Labbé, C., Chain, F., Mimee, B & Bélanger, R.R 2008. Nutritional regulation and kinetics of flocculosin synthesis by Pseudozyma flocculosa. Applied microbiology and biotechnology, 80(2): 307.
Hammami, R., Oueslati, M., Smiri, M., Nefzi, S., Ruissi, M., Comitini, F., Romanazzi, G., Cacciola, S.O & Sadfi Zouaoui, N. 2022. Epiphytic Yeasts and Bacteria as Candidate Biocontrol Agents of Green and Blue Molds of Citrus Fruits. Journal of Fungi, 8(8): 818.
Helbig, J. 2002. Ability of the antagonistic yeast Cryptococcus albidus to control Botrytis cinerea in strawberry. BioControl, 47(1): 85–99.
Helbig, J. & Bochow, H. 2001. Effectiveness of Bacillus subtilis (Isolate 25021) in controlling Botrytis cinerea in strawberry/Wirksamkeit von Bacillus subtilis (Isolat 25021) bei der Bekämpfung von Botrytis cinerea an der Erdbeere. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 545–559.
Huang, R., Li, G.Q., Zhang, J., Yang, L., Che, H.J., Jiang, D. H. & Huang, H. C. 2011. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology, 101(7): 859–869.
Hussain, H., Root, N., Jabeen, F., Al‐Harrasi, A., Ahmad, M., Mabood, F., Hassan, Z., Shah, A., Green, I.R., Schulz, B. & Krohn, K. 2015. Microsphaerol and seimatorone: Two new compounds isolated from the endophytic fungi, Microsphaeropsis sp. and Seimatosporium sp. Chemistry and biodiversity, 12(2): 289–294.
Janahiraman, V., Anandham, R., Kwon, S.W., Sundaram, S., Karthik Pandi, V., Krishnamoorthy, R., Kim, K., Samaddar Sand & Sa. T. 2016. Control of Wilt and Rot Pathogens of Tomato by Antagonistic Pink Pigmented Facultative Methylotrophic Delftia lacustris and Bacillus spp. Frontiers in Plant Science, 7: 1626.
Jiang, C.H., Liao, M.J., Wang, H.K., Zheng, M.Z., Xu, J.J. & Guo, J.H. 2018. Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biological Control, 126: 147–157.
Kaspar, F., Neubauer, P., Gimpel, M. 2019. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. Journal of natural products, 82(7): 2038–2053.
Khezrinejad, N., Ghosta, Y & Niknam, G. 2009. Fungi Associated with Sugar Beet Cyst Nematode (Heterodera schachtii) From Fields of West Azarbaijan Province, Iran (II). Journal of Agricultural Science and Sustainable Production1, (1): 95–106. (In Persian with English summary)
Köhl, J., Kolnaar, R. & Ravensberg, W.J. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in plant science, 10: 845.
Lanna Filho, R., Romeiro, R.D.S. & Alves, E. 2010. Bacterial spot and early blight biocontrol by epiphytic bacteria in tomato plants. Pesquisa Agropecuária Brasileira, 45(12): 1381–1387.
Laur, J., Ramakrishnan, G.B., LabbÚ, C., Lefebvre, F., Spanu, P.D & BÚlanger, R.R. 2018. Effectors involved in fungal–fungal interaction lead to a rare phenomenon of hyperbiotrophy in the tritrophic system biocontrol agent–powdery mildew–plant. New Phytologist, 217(2): 713–725.
Marchand, G., Rémus–Borel, W., Chain, F., Hammami, W., Belzile, F. & Bélanger, R.R. 2009. Identification of genes potentially involved in the biocontrol activity of Pseudozyma flocculosa. Phytopathology, 99(10): 1142–1149.
Melo, I.S., Faull, J.L, Nascimento, R.S. 2006. Antagonism of Aspergillus terreus to Sclerotinia sclerotiorum. Brazilian Journal of Microbiology, 37(4): 417–419
Miljaković, D., Marinković, J. & Balešević–Tubić, S. 2020. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(7): 1037.
Mirzaei, S., Goltapeh, E.M., Shams‐Bakhsh, M. & Safaie, N. 2008. Identification of Botrytis spp. on plants grown in Iran. Journal of phytopathology, 156(1): 21–28.
Pandey, R.R., Arora, D.K. & Dubey, R.C. 1993. Antagonistic interactions between fungal pathogens and phylloplane fungi of guava. Mycopathologia, 124(1): 31–39.
Paulitz, T.C. & Bélanger, R.R. 2001. Biological control in greenhouse systems. Annual review of phytopathology, 39(1): 103–133.
Raaijmakers, J.M., Vlami, M. & De Souza, J.T. 2002. Antibiotic production by bacterial biocontrol agents. Antonie van leeuwenhoek, 81(1): 537–547.
Rabølle, M., Spliid, N.H., Kristensen, K. & Kudsk, P. 2006. Determination of fungicide residues in field–grown strawberries following different fungicide strategies against gray mold (Botrytis cinerea). Journal of agricultural and food chemistry, 54(3): 900–908.
Rasiukevičiūtė, N., Rugienius, R. & Šikšnianienė, J.B. 2018. Genetic diversity of Botrytis cinerea from strawberry in Lithuania. Zemdirbyste–Agric, 105(3).
Redmond, J.C., Marois, J.J. & MacDonald, J.D. 1987. Biological control of Botrytis cinerea on roses with epiphytic microorganisms. Plant Disease, 71(9): 799–802.
Rojas–Solís, D., Zetter–Salmón, E., Contreras–Pérez, M., del Carmen Rocha–Granados, M., Macías–Rodríguez, L. & Santoyo, G. 2018. Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth–promoting effects. Biocatalysis and agricultural biotechnology, 13: 46–52.
Sabeti Mohammadi, s., Atghia, O., Hamidian, A.H. & Javan–Nikkhah, M. 2019. Identification of tolerant fungal species in Polycyclic Aromatic Hydrocarbons contaminated soils. 4th Iranian Mycological Congress. (In Persian with English summary)
Sanders, E.R. 2012. Aseptic laboratory techniques: plating methods. Journal of Visualized Experiments, (63), e3064.
Shi, J.F.& Sun, C.Q. 2017. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest. Brazilian Journal of Microbiology, 48(4): 706–714.
South, K.A., Peduto Hand, F. & Jones, M.L. 2020. Beneficial bacteria identified for the control of Botrytis cinerea in petunia greenhouse production. Plant disease, 104(6): 1801–1810.
Thompson, D.C., Clarke, B. & Kobayashi, D. 1996. Evaluation of bacterial antagonists for reduction of summer patch symptoms in Kentucky bluegrass. Plant Disease, 80(8): 856–862.
Tulloch, M. 1972. The genus Myrothecium Tode ex Fr. Commonwealth Mycological Institute.
Utkhede, R.S. & Sholberg, P.L. 1986. In vitro inhibition of plant pathogens by Bacillus subtilis and Enterobacter aerogenes and in vivo control of two postharvest cherry diseases. Canadian journal of microbiology, 32(12): 963–967.
Vargas, M., Garrido, F., Zapata, N. & Tapia, M. 2012. Isolation and selection of epiphytic yeast for biocontrol of Botrytis cinerea Pers. on table grapes. Chilean Journal of Agricultural Research, 72(3): 332.
Wagenaar, M.M & Clardy, J. 2001. Two new roridins isolated from Myrothecium sp. The Journal of Antibiotics, 54(6): 517–520.
Wang, X., Glawe, D.A., Kramer, E., Weller, D. & Okubara, P.A. 2018. Biological control of Botrytis cinerea: interactions with native vineyard yeasts from Washington State. Phytopathology, 108(6): 691–701.
Wang, L., Xi, N., Lang, D., Zhou, L., Zhang, Y. & Zhang, X. 2022. Potential biocontrol and plant growth promotion of an endophytic bacteria isolated from Glycyrrhiza uralensis seeds. Egyptian Journal of Biological Pest Control, l32(1): 1–16.
Weisburg, W.G., Barns, S.M., Pelletier, D.A. & Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology, 173(2): 697–703.
Whipps, J.M. 1987. Effect of media on growth and interactions between a range of soil‐borne glasshouse pathogens and antagonistic fungi. New Phytologist, 107(1): 127–142.
Williamson, B., Tudzynski, B., Tudzynski, P. & van Kan, J.A. 2007. Botrytis cinerea: the cause of grey mould disease. Molecular plant pathology, 8(5): 561–580
Zangoei, E., Etebarian, H.R. & Sahebani, N. 2013. Biological control of gray mold on apple by combining of some yeast and Bacillus subtilis isolates and induction of defense responses. Biological Control of Pests and Plant Diseases, 141–153. (In Persian with English summary)
Zhang, K., Yuan–Ying, S. & Cai, L. 2013. An optimized protocol of single spore isolation for fungi. Cryptogamie, Mycologie, 34(4): 349–356.
Zhou, L., Song, C. Muñoz, C.Y. & Kuipers, O.P. 2021. Bacillus cabrialesii BH5 Protects Tomato Plants against Botrytis cinerea by Production of Specific Antifungal Compounds. Frontiers in microbiology, 12, 707609.