Bioefficacy of pseudomonads from wheat rhizosphere against wheat common root and crown rot caused by Bipolaris sorokiniana (Sacc.) Shoemaker

Document Type : Research Paper

Authors

1 Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Iran

2 Department of Agronomy & Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Iran

10.22092/bcpp.2023.362550.335

Abstract

Fluorescent pseudomonads control plant pathogens by producing siderophore and inhibitory metabolites, and increase plant growth by producing plant hormones, some enzymes and mineral elements solubilization. In this study, 10 isolates of fluorescent pseudomonads from wheat rhizosphere cv. Zagros and Chamran (Dezful) and cv. Kohdasht and Zagros (Parsabad) in early April 2016 and early June 2017 were isolated by cultivation and purification on King B medium and also based on the production of green and yellow fluorescence pigment under UV light at 365 nm. These isolates were evaluated in terms of some metabolic characteristics such as inorganic phosphate solubilization, production of IAA, siderophore, ACC deaminase, hydrogen cyanide and protease, as well as control of wheat common root and crown rot disease caused by B. sorokiniana and increase in length and biomass of wheat shoots and roots in a randomized complete design (RCD) with three replications for each treatment.The UTP105 isolate showed the highest inhibition rate of pathogen growth with 62.5% and 70% in dualculture and production of volatile metabolites tests, respectively. In the greenhouse, the severity of disease was estimated at 85.3%, and UTP104 and UTP105 isolates showed the highest rate of disease reduction with 64.5% and 62.3%, respectively. Also, UTP105 and UTP104 were the most effective in increasing the wheat root and shoot growth parameters, respectively. These isolates are efficient for use in agriculture due to having favorable metabolic characteristics, disease control and plant growth enhancement.
.

Keywords

Main Subjects


Abdullah, A.S., Gibberd, M.R. & Hamblin, J. 2020. Co–infection of wheat by Pyrenophora tritici–repentis and Parastagonospora nodorum in the wheatbelt of Western Australia. Crop and Pasture Science, 71(2): 119–127.
Aboukhaddour, R., Fetch, T., McCallum, B.D., Harding, M.W., Beres, B.L. & Graf, R.J. 2020. Wheat diseases on the prairies: A Canadian story. Plant Pathology, 69(3): 418–432.
Agaras, B.C., Noguera, F., Anta, G.G., Wall, L.G. & Valverde, C. 2020. Biocontrol potential index of pseudomonads, instead of their direct–growth promotion traits, is a predictor of seed inoculation effect on crop productivity under field conditions. Biological Control, 143: 104209.
Ahmed, A. & Hasnain, S. 2014. Auxins as one of the factors of plant growth improvement by plant growth promoting rhizobacteria. Polish Journal of Microbiology, 63(3): 261–266. 
Allali, K., Goudjal, Y., Zamoum, M., Bouznada, K., Sabaou, N. & Zitouni, A. 2019. Nocardiopsis dassonvillei strain MB22 from the Algerian Sahara promotes wheat seedlings growth and potentially controls the common root rot pathogen Bipolaris sorokiniana. Journal of Plant Pathology, 101: 1115–1125.
Al–Sadi, A.M. & Deadman, M.L. 2010. Influence of seed–borne Cochliobolus sativus (Anamorph Bipolaris sorokiniana) on crown rot and root rot of barley and wheat. Journal of Phytopathology, 158(10): 683–690.
Al–Sadi, A.M. 2021. Bipolaris sorokiniana–induced black point, common root rot, and spot blotch diseases of wheat: A review. Frontiers in Cellular and Infection Microbiology, 11: 584899.
Alström, S. & Burns, R.G. 1989. Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biology and Fertility of Soils, 7: 232–238.
Ansary, M., Rahmani, H., Ardakani, M.R., Paknejad, F., Davood, H. & Mafakheri, S. 2012. Effect of Pseudomonas fluorescent on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Annals of Biological Research, 3(2): 1054–1062.
Asha, B.B., Chandra Nayaka, S., Udaya Shankar, A.C., Srinivas, C. & Niranjana, R. 2011. Biological control of F. oxysporum f.sp. lycopersici causing wilt of tomato by Pseudomonas fluorescens. International Journal of Microbiology Research, 3: 79–84.
Bajaj, B.K. & Sharma, P. 2011. An alkali–thermotolerant extracellular protease from a newly isolated Streptomyces sp. DP2. New biotechnology, 28(6): 725–732.
Blom, D., Fabbri, C., Connor, E.C., Schiestl, F.P., Klauser, D.R., Boller, T., Eberl, L. & Weisskopf, L. 2011. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environmental microbiology, 13(11): 3047–3058. 
Brick, J.M., Bustock, R.M. & Silversone, S.E. 1991. Rapid in situ assay for indole acetic acid production by bacterial immobilization on a nitrocellulose membrane. Applied and Environmental Microbiology, 57(2): 535–538.
Campanella, V., Mandalà, C., Angileri, V. & Miceli, C. 2020. Management of common root rot and Fusarium foot rot of wheat using Brassica carinata break crop green manure. Crop Protection, 130: 105073.
Campestre, M.P., Castagno, L.N., Estrella, M.J. & Ruiz, O.A. 2016. Lotus japonicus plants of the Gifu B–129 ecotype subjected to alkaline stress improve their Fe (2+) bio–availability through inoculation with Pantoea eucalypti M91. Journal of Plant Physiology, 192: 47–55.
Castro, R.O., Cornejo, H.A.C., Rodriguez, L.M. & Bucio, J.L. 2009. The role of microbial signals in plant growth and development. Plant Signaling & Behavior, 4(8): 701–712.
Damayanti, T.A., Pardede, H. & Mubarik, N.R. 2007. Utilization of root colonizing bacteria to protect hot–pepper against Tobacco MosaicTobamovirus. HAYATI Journal of Biosciences, 14(3): 105–109.
Delkhah, Z. & Behboudi, K. 2021. Improvement of biocontrol efficacy of Trichoderma harzianum Tr6 vs. Phytophthora drechsleri, the causal agent of damping–off disease in Cucumis sativus. Journal of Crop Protection, 10(2): 411–423.
De Serrano, L.O. 2017. Biotechnology of siderophores in high–impact scientific fields. Biomolecular Concepts, 8(3–4): 169–178.
Domagal–Goldman, S.D., Paul, K.W., Sparks, D.L. & Kubicki, J.D. 2009. Quantum chemical study of the Fe (III)–desferrioxamine B siderophore complex—electronic structure, vibrational frequencies, and equilibrium Fe–isotope fractionation. Geochimica et Cosmochimica Acta, 73: 1–12.
Durairaj, K., Velmurugan, P., Park, J.H., Chang, W.S., Park, Y.J., Senthilkumar, P., Choi, K.M., Lee, J.H. & Oh, B.T. 2017. Potential for plant biocontrol activity of isolated Pseudomonas aeruginosa and Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism. FEMS Microbiology Letters, 364(23): 1–8.
Dworkin, M. & Foster, J.W. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. Journal of bacteriology, 75(5): 592–603.
Eken, C. & Yuen, G. 2014. Biocontrol of common root rot of wheat with Lysobacter enzymogenes and binucleate Rhizoctonia. Romanian Agricultural Research, 31: 309–314.
Fedel–Moen, R. & Harris, J.R. 1987. Stratified distribution of Fusarium and Bipolaris on wheat and barley with dryland root rot in South Australia. Plant Pathology, 36(4): 447–454.
Fernandez, M.R., May, W.E. & Lafond, G.P. 2010. Effect of fungicide seed treatments on root pathogens of cereal crops under field conditions. Canadian Journal of Plant Science, 90: 905–917.
Fiddaaman, P.J. & Rossal, S. 1994. Effect of substrate on the production of antifungal volatiles. Journal of Applied Microbiology, 76(4): 345–405.
Ganeshan, G. & Kumar, A.M. 2005. Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. Journal of Plant Interactions, 1(3): 123–134.
Ghazy, N. & El–Nahrawy, S. 2021. Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in Controlling Cephalosporium maydis in maize plant. Archives of Microbiology, 203(3): 1195–1209.
Gopalakrishnan, S., Srinivas, V., Prakash, B., Sathya, A. & Vijayabharathi, R. 2015. Plant growth–promoting traits of Pseudomonas geniculata isolated from chickpea nodules. 3 Biotech, 5: 653–661.
Gopalakrishnan, S., Upadhyaya, H.D. & Vadlamud, S. 2012. Plant growth–promoting traits of biocontrol potential bacteria isolated from rice rhizosphere. Springerplus, 1: 1–7.
Govaerts, B., Mezzalama, M., Sayre, K.D., Crossa, J., Nicol, J.M. & Deckers, J. 2006. Long–term consequences of tillage, residue management, and crop rotation on maize/wheat root rot and nematode populations in subtropical highlands. Applied Soil Ecology, 32: 305–315.
Gultyaeva, E., Yusov, V., Rosova, M., Mal’chikov, P., Shaydayuk, E., Kovalenko, N., Wanyera, R., Morgounov, A., Yskakova, G. & Rsaliyev, A. 2020. Evaluation of resistance of spring durum wheat germplasm from Russia and Kazakhstan to fungal foliar pathogens. Cereal Research Communications, 48: 71–79.
Gupta, S. & Pandey, S. 2019. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Frontiers in Microbiology, 10: 1506.
Hagedorn, C., Gould, W.D. & Berardinelli, R.T. 1989. Rhizobacteria of cotton and their repression of seedling disease pathogens. Applied Environmental Microbiology, 55(11): 2793–2797.
Hajjam, Y., Thami–Alami, I., Udupa, S. & Cherkaoui, S. 2016. Isolation and evaluation of phosphate solubilizing Rhizobia from root nodules of faba bean (Vicia faba L.) in morocco. Journal of Materials and Environmental Science, 7(11): 4000–4010.
Hernández–León, R., Rojas–Solís, D., Contreras–Pérez, M. & del Carmen Orozco–Mosqueda, M. 2015. Characterization of the antifungal and plant growth–promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control, 81: 83–92.
Hosseinzadeh, H., Behboodi, K. and Delkhah, Z. 2017. Interaction of Pseudomonas fluorescens UTP100, wheat cultivars and Fusarium culmorum. Iranian Journal of Plant Protection Science, 48(2): 327–339. (In Persian with English summary).
Hsueh, P.R., Teng, L.J., Pan, H.J., Chen, Y.C., Sun, C.C., Ho, S.W. & Luh, K.T. 1998. Outbreak of Pseudomonas fluorescens bacteremia among oncology patients. Journal of Clinical Microbiology, 36: 2914–7.
Kalayu, G. 2019. Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy, 2019: 4917256.
Karamian, F., Salari, M., Pirnia, M., Ahmadpour, A. & Javan Nikkhah, M. 2022. Mating type and fertility status in populations of Bipolaris sorokiniana, the causal agent of root and crown common rot of wheat in Iran. Iranian Journal of Plant Protection Science52(2):1–14. (In Persian with English summary).
Kazan, K. & Gardiner, D.M. 2018. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: Recent progress and future prospects. Molecular Plant Pathology, 19(7): 1547–1562.
King, E.O., Word, M.K. & Raney, D.E. 1954. To simple media for the demonstration of pyocyamin and fluorescin. Journal of Laboratory and Clinical Medicine, 414: 301–307.
Klein, T.A., Burgess, L.W. & Ellison, F.W. 1991. The influence and spatial patterns of wheat plants infected by Fusarium graminearum group 1 and the effect of crown rot on yield. Australian Journal of Agricultural Research, 42: 399–407.
Kloepper, J.W., Lifshitz, R. & Schroth, M.N. 1988. Psuedomonas inoculants to benefit plant production. ISI Atlas Sci.: Animal and Plant Sciences, 60–64.
Köhl, J., Kolnaar, R. & Ravensberg, W.J. 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10: 845. 
Kremer, R.J. & Souissi, T. 2001. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Current microbiology, 43(3): 182–186.
Kumar, G.P., Mir Hassan Ahmed, S.K., Suseelendra Desai, S., Amalraj, E.L.D. & Abdul Rasul, A. 2014. In vitro screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp. International Journal of Bacteriology, 2014: 195946.
Lagzian, A. Saberi Riseh, R., Khodaygan, P., Sedaghati, E. & Dashti, H. 2013. Introduced Pseudomonas fluorescens VUPf5 as an important biocontrol agent for controlling Gaeumannomyces graminis var. tritici the causal agent of take–all disease in wheat. Archives of Phytopathology and Plant Protection, 46: 2104–2116.
Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Belabess, Z. & Barka, E.A. 2022. Biological control of plant pathogens: A global perspective. Microorganisms, 10(3): 596.
Lanteigne, C., Gadkar, V.J., Wallon, T., Novinscak, A. & Filion, M. 2012. Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology, 102(10): 967–973.
Lau, G.W., Hassett, D.J., Ran, H. & Kong, F. 2004. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends in Molecular Medicine, 10: 599–606.
Ledingham, R.J., Atkinson, T.G., Horricks, J.S., Mills, J.T., Piening, L.J. & Tinline, R.D. 1973. Wheat losses due to common root rot in the prairie provinces of Canada, 1969–71. Canadian Plant Disease Survey, 53: 113–22.
Maleki, M., Mostafaee, S., Mokhtarnejad, L. & Farzaneh, M. 2010. Characterization of’Pseudomonas fluorescens’ Strain CV6 isolated from cucumber rhizosphere in Varamin as a potential biocontrol agent. Australian Journal of Crop Science, 4: 676–683.
Manasa, M., Ravinder, P., Gopalakrishnan, S., Srinivas, V., Sayyed, R.Z., El Enshasy, H.A., Yahayu, M., Kee Zuan, A.T., Kassem, H.S. & Hameeda, B. 2021. Co–inoculation of Bacillus spp. for growth promotion and iron fortification in sorghum. Sustainability, 13(21): 12091.
Mansoori, B. & Pazhoumand, M. 2005. Field reaction of some wheat advanced lines and cultivars to common root and crown rot pathogens in Fars province. Seed and Plant Journal21:81–92. (In Persian with English summary).
Mansoori, B., Ravanlu, A., Nurullahi, K., Azadbakht, N., Jafari, H. & Qalandar, M. 2002. Common root and crown rot disease of wheat in West Azarbaijan, Ilam, Lorestan, Zanjan and Markazi provinces. 15th Iranian plant protection Congress, Kermanshah (In Persian with English summary).
Meyer, J.M., Geoffroy, V.A., Baida, N., Gardan, L., Izard, D., Lemanceau, P., Achouak, W. & Palleroni, N. 2002. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Applied and Environmental Microbiology, 68: 2745–53.
Michelsen, C.F. & Stougaard, P. 2012. Hydrogen cyanide synthesis and antifungal activity of the biocontrol strain Pseudomonas fluorescens In5 from Greenland is highly dependent on growth medium. Canadian Journal of Microbiology, 58(4): 381–390.
Moya–Elizondo, E.A., Rew, L.J., Jacobsen, B.J., Hogg, A.C. & Dyer, A.T. 2011. Distribution and prevalence of fusarium crown rot and common root rot pathogens of wheat in Montana. Plant Disease, 95(9): 1099–1108.
O’Brien, P.A. 2017. Biological control of plant diseases. Australasian Plant Pathology, 46(4):293–304.
Olanrewaju, O.S., Glick, B.R. & Babalola, O.O. 2017. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology & Biotechnology, 33(11): 197.
Orozco–Mosqueda, M.D.C., Duan, J., DiBernardo, M., Zetter, E., Campos–García, J., Glick, B.R. & Santoyo, G. 2019. The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Frontiers in Microbiology, 10: 1392.
Pankievicz, V.C.S., do Amaral, F.P., Ané, J.M. & Stacey, G. 2021. Diazotrophic bacteria and their mechanisms to interact and benefit cereals. Molecular Plant–Microbe Interactions: MPMI, 34(5): 491–498.
Panpatte, D.G., Jhala, Y.K., Shelat, H.N. & Vyas, R.V. 2016. Pseudomonas fluorescens: A promising biocontrol agent and PGPR for sustainable agriculture; Springer: New Delhi, India.
Persello–Cartieaux, F., David, P., Sarrobert, C., Thibaud, M.C., Achouak, W., Robaglia, C. & Nussaume, L. 2001. Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root–associated Pseudomonas. Planta, 212: 190–198.
Qostal, S., Kribel, S., Chliyeh, M., Serghat, S., KarimaSelmaoui, A.O.T., Zaarati, H., Benkirane, R. & Douira, A. 2019. Study of the fungal complex responsible for root rot of wheat and barley in the north–west of morocco. Plant Archives, 19(2): 2143–2157.
Rijavec, T. & Lapanje, A. 2016. Hydrogen cyanide in the rhizosphere: Not suppressing plant pathogens, but rather regulating availability of phosphate. Frontiers in Microbiology, 7: 1785.
Rudrappa, T., Czymmek, K.J., Paré, P.W. & Bais, H.P. 2008. Root–secreted malic acid recruits beneficial soil bacteria. Plant physiology, 148(3): 1547–1556.
Salehpour, M., Etebarian, H.R., Roustaei, A., Khodakaramian, G. & Aminian, H. 2005. Biological control of common root rot of wheat (Bipolaris sorokiniana) by Trichoderma isolates. Plant Pathology Journal, 4(1): 85–90.
Saremi, H. & Saremi, H. 2013. Isolation of the most common Fusarium species and the effect of soil solarisation on main pathogenic species in different climatic zones of Iran. European Journal of Plant Pathology, 137: 585–596.
Sharifi, R., Ahmadzadeh, M., Sharifi–Tehrani, A. & Talebi–Jahromi, K. 2010. Pyoverdine production in Pseudomonas fluorescens UTPF5 and its association with suppression of common bean damping off caused by Rhizoctonia solani (Kühn). Journal of Plant Protection Research, 50: 72–78.
Smiley, R.W., Gourlie, J.A., Easley, S.A., Patterson, L.M. & Whittaker, R.G. 2005. Crop damage estimates for crown rot of wheat and barley in the Pacific Northwest. Plant Disease, 89(6): 595–604. 
Spaepen, S. & Vanderleyden, J. 2011. Auxin and plant–microbe interactions. Cold Spring Harbor Perspectives in Biology, 3(4): a001438.
Stockwell, V.O. & Stack, J.P. 2007. Using Pseudomonas spp. for integrated biological control. Phytopathology, 97(2): 244–249.
Taheri, E., Tarighi, S. & Taheri, P. 2022. Isolation, identification, and characterization of bacterial endophytes in Iranian wheat cultivars. Plant Protection (Scientific Journal of Agriculture)45(2): 91–108. (In Persian with English summary).
Tariq, M.R., Shaheen, F., Mustafa, S., Ali, S., Fatima, A., Shafiq, M., Safdar, W., Sheas, M.N., Hameed, A. & Nasir, M.A. 2022. Phosphate solubilizing microorganisms isolated from medicinal plants improve growth of mint. PeerJ, 10: e13782.
Timofeeva, A.M., Galyamova, M.R. & Sedykh, S.E. 2022. Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture. Plants (Basel, Switzerland), 11(22): 3065.
Tinline, R.D. 1977. Multiple infections of sub–crown internodes of wheat (Triticum aestivum) by common root rot fungi. Canadian Journal of Botany, 55: 30–34.
Tunali, B., Nicol, J.M., Hodson, D., Uçkun, Z., Büyük, O., Erdurmuş, D., Hekimhan, H., Aktaş, H., Akbudak, M.A. & Bağci, S.A. 2008. Root and crown rot fungi associated with spring, facultative, and winter wheat in Turkey. Plant Disease, 92(9): 1299–1306.
Ullah, H., Yasmin, H., Mumtaz, S., Jabeen, Z., Naz, R. & Nosheen, A. 2020. Multitrait Pseudomonass pp. isolated from monocropped wheat (Triticum aestivum) suppress Fusarium root and crown rot. Phytopathology, 110: 582–592.
Uzair, B. Kausar, R. Bano, S.A. Fatima, S. Badshah, M. Habiba, U. & Fasim, F. 2018. Isolation and molecular characterization of a model antagonistic Pseudomonas aeruginosa divulging in vitro plant growth promoting characteristics. BioMed Research International, 2018: 6147380.
Vacheron, J., Moënne–Loccoz, Y., Dubost, A., Gonçalves–Martins, M., Muller, D. & Prigent–Combaret, C. 2016. Fluorescent pseudomonas strains with only few plant–beneficial properties are favored in the maize rhizosphere. Frontiers in plant science, 7: 1212.
Vanitha, S. & Ramjegathesh, R. 2014. Biocontrol potential of Pseudomonas fluorescens against coleus root rot disease. Journal of Plant Pathology & Microbiology, 5: 216.
Verma, S.C., Ladha, J.K. & Tripathi, A.K., 2001. Evaluation of plant growth promoting and colonization from deep water rice. Journal of Biotechnology, 91: 127–141.
Viterbo, A., Landau, U., Kim, S., Chernin, L. & Chet, I. 2010. Characterization of ACC deaminase from the biocontrol and plant growth–promoting agent Trichoderma asperellum T203. FEMS Microbiology Letters, 305: 42–48.
Voisard, C., Keel, C., Haas, D. & Dèfago, G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. The EMBO journal, 8(2): 351–358.
Wahyudi, A.T. & Astuti, R.I. 2011. Screening of Pseudomonas sp. isolated from rhizosphere of soybean plant as plant growth promoter and biocontrol agent. American Journal of Agricultural and Biological Sciences, 6: 134–141.
Wang, X., Zhou, X., Cai, Z., Guo, L., Chen, X., Chen, X., Liu, J., Feng, M., Qiu, Y., Zhang, Y. & Wang, A. 2020. A biocontrol strain of Pseudomonas aeruginosa CQ–40 promote growth and control Botrytis cinerea in Tomato. Pathogens (Basel, Switzerland), 10: 22.
Wei, G., Kloepper, J.W. & TuZun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth promoting rhizobacteria. Phytopathology, 81: 1508–1512.
White, D.J., Chen, W. & Schroeder, K.L. 2019. Assessing the contribution of ethaboxam in seed treatment cocktails for the management of metalaxyl–resistant Pythium ultimum var. ultimum in Pacific Northwest spring wheat production. Crop Protection, 115: 7–12.
Wildermuth, G.B., Tinline, R.D. & McNamara, R.B. 1992. Assessment of yield loss caused by common root rot in wheat cultivars in Queensland. Australian Journal of Agricultural Research, 43: 43–58.
Win, K.T., Kobayashi, M., Tanaka, F., Takeuchi, K., Oo, A.Z. & Jiang, C.J. 2022. Identification of Pseudomonas strains for the biological control of soybean red crown root rot. Scientific Reports, 12: 14510.
Woomer, P., Bennet, J. & Yost, R. 1990. Overcoming the inflexibility of most–probable number procedures. Agronomy Journal, 82: 349–353.
Xie, H., Pasternak, J. & Glick, B. 1996. Isolation and characterization of mutants of the plant growth–promoting rhizobacterium Pseudomonas putida GR12–2 that overproduce indoleacetic acid. Current Microbiology, 32: 67–71.
Xu, W., Xu, L., Deng, X., Goodwin, P.H., Xia, M., Zhang, J., Wang, Q., Sun, R., Pan, Y., Wu, C. & Yang, L. 2021. Biological control of take–all and growth promotion in wheat by Pseudomonas chlororaphis YB–10. Pathogens (Basel, Switzerland), 10(7): 903.
Xu, F., Yang, G., Wang, J., Song, Y., Liu, L., Zhao, K., Li, Y. & Han, Z. 2018. Spatial distribution of root and crown rot fungi associated with winter wheat in the North China Plain and its relationship with climate variables. Frontiers in Microbiology, 9: 1054.
Yue, H.M., Wang, M., Gong, W.F. & Zhang, L.Q. 2018. The screening and identification of the biological control fungi Chaetomium spp. against wheat common root rot. FEMS Microbiology Letters, 365(22): fny242.