Effect of treated bell pepper with Trichoderma harzianum and jasmonic acid on life table parameters of predator mite, Amblyseius swirskii feeding on western flower thrips

Document Type : Research Paper

Authors

1 Ph.D. student of agricultural entomology, Bu–Ali Sina University, Hamedan, Iran.

2 Professor of Acarology, Bu-Ali Sina University, Hamedan.Iran.

3 Assistant Professor, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.

10.22092/bcpp.2023.363134.342

Abstract

The predator mite, Amblyseius swirskii Athias and Henrioti, is one of the effective and polyphagous biological control agents that feed on different pest species such as thrips, whiteflies, and two spotted spider mites. Currently, it is used to control western flower thrips (WFT), Frankliniella occidentalis (Pergande), and some other insect pests but in times of outbreak and high density of the pest population, its efficiency is reduced and it is necessary to use complementary methods to control the pest damage. In this study, the effect of treated bell peppers (Lorca variety) with Jasmonic acid (0.5 mm), Trichoderma harzianum Rifai T22 (10 ml per plant from 107 spore/ml suspension), and the combination of Jasmonic acid with T. harzianum (JA + Th) was investigated on the biological characteristics and life table parameters of A. swirskii reared on WFT the. The experiment was carried out with 80 replications for each treatment in constant environmental conditions (25 ± 1°C, 65 ± 5% RH, and 16:8 h light: dark). Based on the results, the longest (9.41 days) and shortest (7.94 days) developmental time of immature stages were obtained in JA + Th treatment and control, respectively. The shortest female adult longevity (24.92 days) were also observed in JA + Th treatment. All the life table parameters showed a significant difference. The highest and lowest values of the intrinsic rate of increase (r), net reproductive rate (R0) and, finite rate of increase (λ) were estimated as 0.1688 and 0.1300 day–1, 24.49 and 11.71 (eggs/individual), and 1.184 and 1.139 day–1 for control and JA + Th treatment, respectively. The results of this study could be used in the application of A. swirskii with JA + Th treatment in integrated management programs of WFT.
.

Keywords

Main Subjects


Abou–Awad, B.A., El–Sawaf, B.M. & Abdel–Khalek, A.A. 2000. Impact of two eriophyoid fig mites, Aceria ficus and Rhyncaphytoptus ficifoliae, as prey on postembryonic development and oviposition rate of the predacious mite Amblyseius swirskii. Acarologia, 40(4): 367–371.
Agrawal, A.A. 2000. Mechanisms, ecological consequences and agricultural implications of tri–trophic interactions. Current Opinion in Plant Biology, 3(4): 329–335.
Alinejad, M., Kheradmand, K. & Fathipour, Y. 2014. Sublethal effects of fenazaquin on life table parameters of the predatory mite Amblyseius swirskii (Acari: Phytoseiidae). Experimental and Applied Acarology, 64: 361–373.
Alipour, Z., Fathipour, Y. & Farazmand, A. 2016. Age–stage predation capacity of Phytoseiulus persimilis and Amblyseius swirskii (Acari: Phytoseiidae) on susceptible and resistant rose cultivars. International Journal of Acarology, 42(4): 224–228.
Alipour, Z., Fathipour, Y., Farazmand, A. & Khanamani, M. 2019. Resistant rose cultivar affects life table parameters of two–spotted spider mite and its predators Phytoseiulus persimilis and Amblyseius swirskii (Phytoseiidae). Systematic and Applied Acarology, 24(9): 1620–1630.
Alizadeh, H., Behboudi, K., Ahmadzadeh, M., Javan–Nikkhah, M., Zamioudis, C., Pieterse, C.M. & Bakker, P.A. 2013. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biological Control, 65(1): 14–23.
Asgari, F., Moayeri, H.R.S., Kavousi, A., Enkegaard, A. & Chi, H. 2020. Demography and mass rearing of Amblyseius swirskii (Acari: Phytoseiidae) fed on two species of stored–product mites and their mixture. Journal of Economic Entomology, 113(6): 2604–2612.
Bahari, F., Fathipour, Y., Talebi, A. A. & Alipour, Z. 2018. Long–term feeding on greenhouse cucumber affects life table parameters of two–spotted spider mite and its predator Phytoseiulus persimilis. Systematic and Applied Acarology, 23(12): 2304–2316.
Batta, Y.A. 2004. Effect of treatment with Trichoderma harzianum Rifai formulated in invert emulsion on postharvest decay of apple blue mold. International Journal of Food Microbiology, 96(3): 281–288.
Bazgir, F., Shakarami, J. & Jafari, S. 2018. Life table and predation rate of Amblyseius swirskii (Acari: Phytoseiidae) fed on Eotetranychus frosti (Tetranychidae) and Cenopalpus irani (Tenuipalpidae). Systematic and Applied Acarology, 23(8): 1614–1626.
Bergman, J.M. & Tingey, W.M. 1979. Aspects of interaction between plant genotypes and biological control. Bulletin of the ESA, 25(4): 275–279.
Bultman, T.L., Pulas, C., Grant, L., Bell, G. & Sullivan, T.J. 2006. Effects of fungal endophyte isolate on performance and preference of bird cherry–oat aphid. Environmental entomology, 35(6): 1690–1695.
Carey, J.R. 1993. Applied demography for biologists: with special emphasis on insects. Oxford University Press.
Carey, J.R. 2001. Insect biodemography. Annual Review of Entomology, 46(1): 79–110.
Chant, D.A. 1959. Phytoseiid mites (Acarina: Phytoseiidae). The Memoirs of the Entomological Society of Canada, 91(S12): 5–166.
Chi, H. 1988. Life–table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17(1): 26–34.
Chi, H. 2017. TWOSEX–MSChart: a computer program for the age–stage, two–sex life table analysis. http://140.120.197.173/Ecology/. National Chung Hsing University, Taichung Taiwan.
Chi, H.S.I.N. & Liu, H.S.I. 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinnica, 24(2): 225–240.
Cogni, R., Freitas, A.V.L. & Amaral Filho, B.F. 2002. Influence of prey size on predation success by Zelus longipes L. (Het.: Reduviidae). Journal of Applied Entomology, 126(2‐3): 74–78.
Coppola, M., Cascone, P., Chiusano, M.L., Colantuono, C., Lorito, M., Pennacchio, F., Roa, R., Woo, S.L., Guerrieri, E. & Digilio, M. C. 2017. Trichoderma harzianum enhances tomato indirect defense against aphids. Insect Science, 24(6): 1025–1033.
DeGraaf, H.E. & Wood, G.M. 2009. An improved method for rearing western flower thrips Frankliniella occidentalis. Florida Entomologist, 92(4): 664–666.
Fahim, S.F. & El–Saiedy, E.S.M. 2021. Life table parameters of Amblyseius swirskii and Neoseiulus californicus (Acari: Phytoseiidae) reared on two strawberry cultivars. International Journal of Acarology, 47(7): 568–574.
Fathipour, Y. & Maleknia, B. 2016. Mite predators. In Ecofriendly pest management for food security (pp. 329–366). Academic Press.
Fathipour, Y., Maleknia, B., Bagheri, A., Soufbaf, M. & Zalucki, M.P. 2019. Spider mite host plant resistance traits improve the predatory performance of Phytoseiulus persimilis on cucumber, despite negative life history impacts. Biological Control, 138: 104064.
Harman, G.E., Howell, C.R., Viterbo, A., Chet, I. & Lorito, M. 2004. Trichoderma species—opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1): 43–56.
Havasi, M., Sangak Sani Bozhgani, N., Golmohmmadi, G. & Kheradmand, K. 2021. Impact of hexythiazox on life table parameters of the Amblyseius swirskii (Acari: Phytoseiidae) and its prey Tetranychus urticae. Journal of Crop Protection, 10(2): 295–308.
Hermosa, R., Viterbo, A., Chet, I. & Monte, E. 2012. Plant–beneficial effects of Trichoderma and of its genes. Microbiology, 158(1): 17–25.
Hosseininia, A., Khanjani, M., Asadi, M. & Soltani, J. 2020. Life–history of the predatory mite Amblyseius swirskii (Athias–Henriot) (Acari: Phytoseiidae) on Tetranychus urticae Koch (Acari: Tetranychidae), Carpoglyphus lactis Linnaeus (Acari: Carpoglyphidae) and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). Journal of Ornamental Plants, 10(3): 155–166.
Huang, Y.B. & Chi, H. 2013. Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): with an invalidation of the jackknife technique. Journal of Applied Entomology, 137(5): 327–339.
Hunter, M.D. & Price, P.W. 1992. Playing chutes and ladders: heterogeneity and the relative roles of bottom–up and top–down forces in natural communities. Ecology, 724–732.
Hunter, M.D. 2003. Effects of plant quality on the population ecology of parasitoids. Agricultural and Forest Entomology, 5(1): 1–8.
Jaber, L.R. & Araj, S.E. 2018. Interactions among endophytic fungal entomopathogens (Ascomycota: Hypocreales), the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae), and the aphid endoparasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Biological Control, 116: 53–61.
Jafari, S., Moayeri, H. S. & Kavousi, A. 2016. Temperature–dependent life table of the predatory mite, Amblyseius swirskii (Mesostigmata: Phytoseidae) fed on stored product mite Carpoglyphus lactis (Astigmata: Carpoglyphidae). Journal of Entomological Society of Iran, 36(3): 163–179.
Kagata, H., Nakamura, M. & Ohgushi, T. 2005. Bottom‐up cascade in a tri‐trophic system: different impacts of host‐plant regeneration on performance of a willow leaf beetle and its natural enemy. Ecological Entomology, 30(1): 58–62.
Kaitaniemi, P., Vehviläinen, H. & Ruohomäki, K. 2004. Movement and disappearance of mountain birch defoliators are influenced by the interactive effects of plant architecture and induced resistance. Ecological Entomology, 29(4): 437–446.
Kaplan, I., Lynch, M. E., Dively, G. P. & Denno, R. F. 2007. Leafhopper–induced plant resistance enhances predation risk in a phytophagous beetle. Oecologia, 152: 665–675.
Khanamani, M., Fathipour, Y. & Hajiqanbar, H. 2015. Assessing compatibility of the predatory mite Typhlodromus bagdasarjani (Acari: Phytoseiidae) and resistant eggplant cultivar in a tritrophic system. Annals of the Entomological Society of America, 108(4): 501–512.
Khanamani, M., Fathipour, Y., Hajiqanbar, H. & Sedaratian, A. 2014. Two–spotted spider mite reared on resistant eggplant affects consumption rate and life table parameters of its predator, Typhlodromus bagdasarjani (Acari: Phytoseiidae). Experimental and Applied Acarology, 63: 241–252.
Lee, H.S. & Gillespie, D.R. 2011. Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Experimental and applied acarology, 53: 17–27.
Maroufpoor, M. 2016. Comparison of predation rate of Amblyseius swirskii fed on Phyllocoptes adalius and Tetranychus urticae under laboratory conditions. Biocontrol in Plant Protection, 4(1): 85–92.
McLean, K.L., Hunt, J.S., Stewart, A., Wite, D., Porter, I.J. & Villalta, O. 2012. Compatibility of a Trichoderma atroviride biocontrol agent with management practices of Allium crops. Crop Protection, 33: 94–100.
McMurtry, J.A., Sourassou, N.F. & Demite, P.R. 2015. The Phytoseiidae (Acari: Mesostigmata) as biological control agents. In Prospects for biological control of plant feeding mites and other harmful organisms (pp. 133–149). Springer, Cham.
Menjivar, R.D., Cabrera, J.A., Kranz, J. & Sikora, R.A. 2012. Induction of metabolite organic compounds by mutualistic endophytic fungi to reduce the greenhouse whitefly Trialeurodes vaporariorum (Westwood) infection on tomato. Plant and Soil, 352(1): 233–241.
Mesquita, A.L. & Lacey, L.A. 2001. Interactions among the entomopathogenic fungus, Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes), the parasitoid, Aphelinus asychis (Hymenoptera: Aphelinidae), and their aphid host. Biological Control, 22(1): 51–59.
Messina, F.J. & Hanks, J.B. 1998. Host plant alters the shape of the functional response of an aphid predator (Coleoptera: Coccinellidae). Environmental Entomology, 27(5): 1196–1202.
Minaei, K. 2013. Thrips (Insecta, Thysanoptera) of Iran: a revised and updated checklist. Zookeys, (330): 53.
Mohammed, A.A. & Hatcher, P.E. 2017. Combining entomopathogenic fungi and parasitoids to control the green peach aphid Myzus persicae. Biological Control, 110: 44–55.
Mortazavi, N., Aleosfoor, M. & Minaei, K. 2015. Comparison of seven methods for rearing western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae). Iran Agricultural Research, 34(2): 15–20.
Muller, M.S., McWilliams, S.R., Podlesak, D., Donaldson, J.R., Bothwell, H.M. & Lindroth, R.L. 2006. Tri‐trophic effects of plant defenses: chickadees consume caterpillars based on host leaf chemistry. Oikos, 114(3): 507–517.
Nemati, A., Zahiri, B. & Khanjani, M. 2020. Systemic changes in tomato induced by foliar–treated hormone and cultivar interactions reduce the fitness of an invasive specialist herbivore, the tomato leaf miner. Iranian Journal of Plant Protection Science, 51(2): 221–233.
Park, H.H., Shipp, L., Buitenhuis, R. & Ahn, J.J. 2011. Life history parameters of a commercially available Amblyseius swirskii (Acari: Phytoseiidae) fed on cattail (Typha latifolia) pollen and tomato russet mite (Aculops lycopersici). Journal of Asia–Pacific Entomology, 14(4): 497–501.
Price, P.W., Bouton, C.E., Gross, P., McPheron, B.A., Thompson, J.N. & Weis, A.E. 1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics, 11(1): 41–65.
Qayyum, M.A., Wakil, W., Arif, M.J., Sahi, S.T. & Dunlap, C.A. 2015. Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biological Control, 90: 200–207.
Rahmani Piyani, A.R., Shishehbor, P., Kocheili, F. & Riddick, E.W. 2021. Comparison of natural prey Tetranychus turkestani, date palm pollen, and bee pollen diets on development, reproduction, and life table parameters of the predator Amblyseius swirskii. Acarologia, 61(4): 890–900.
Riahi, E., Fathipour, Y., Talebi, A.A. & Mehrabadi, M. 2017. Natural diets versus factitious prey: comparative effects on development, fecundity and life table of Amblyseius swirskii (Acari: Phytoseiidae). Systematic and Applied Acarology, 22(5): 711–723.
Sabelis, M.W. 1982. Biological control of two–spotted spider mites using phytoseiid predators. Wageningen University and Research, Centre for Agricultural Publishing and Documentation, Netherlands.
Saikia, R., Singh, T., Kumar, R., Srivastava, J., Srivastava, A.K., Singh, K. & Arora, D.K. 2003. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiological Research, 158(3): 203–213.
San, P.P., Tuda, M. & Takagi, M. 2021. Impact of relative humidity and water availability on the life history of the predatory mite Amblyseius swirskii. BioControl, 66: 497–510.
Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C. & Manners, J.M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences, 97(21): 11655–11660.
Sculten, G.G.M., Mting, H.W. & Sabelis, M.W. 1985. Spider mites: their biology, natural enemies and control, Vol. 1B, Elsevier, Amesterdam, pp. 55–65.
Sedaratian, A., Fathipour, Y. & Moharramipour, S. 2009. Evaluation of resistance in 14 soybean genotypes to Tetranychus urticae (Acari: Tetranychidae). Journal of Pest Science, 82: 163–170.
Shahbaz, M., Khoobdel, M., Khanjani, M., Hosseininia, A. & Khederi, S.J. 2019. Sublethal effects of acetamiprid on biological aspects and life table of Amblyseius swirskii (Acari: Phytoseiidae) fed on Aleuroclava jasmini (Hemiptera: Aleyrodidae). Systematic and Applied Acarology, 24(5): 814–824.
Takahashi, F. & Chant, D.A. 1994. Adaptive strategies in the genus Phytoseiulus Evans (Acari: Phytoseiidae). II. Survivorship and reproduction. International Journal of Acarology, 20(2): 87–97.
Thaler, J.S., Stout, M.J., Karban, R. & Duffey, S.S. 1996. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. Journal of Chemical Ecology, 22(10): 1767–1781.
van Lenteren, J.C. 2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57(1): 1–20.
Vatanparast, P., Zahedi Golpayegani, A., Saboori, A., Behboudi, K. & Mohammai, H. 2022. The effect of Trichoderma harzianum Tr6 on the interaction between Phytoseiulus spersimilis (Acari: Tetranychidae, Phytoseiidae) and its prey Tetranychus urticae on bean plant. Biological Control of Pests and Plant Diseases, 9(2): 185–195.
Waked, D.A., Elewea, M., Basha, A.A.E., Hendawy, M. & Saleh, G.S. 2021. Dispersal of entomopathogenic fungi, Metarhizium anisopliae and its synergistic with predatory mite, Phytoseiulus macropilis for controlling Tetranychus urticae. Research Square.
War, A.R., Paulraj, M.G., War, M.Y. & Ignacimuthu, S. 2011. Jasmonic acid–mediated–induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Journal of Plant Growth Regulation, 30(4): 512–523.