The impact of abiotic and biotic factors on the rearing of the mediterranean flour moth, Ephestia kuehniella (Zeller)

Document Type : Review Paper

Authors

1 Assistant Professor, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.

2 Ph.D. Student, Ferdowsi University, Mashhad, Iran.

10.22092/bcpp.2025.367793.379

Abstract

The Mediterranean flour moth, Ephestia kuehniella is a significant pest of stored products, causing quality deterioration. It is also widely used as a research model in insect biology and physiology studies. Additionally, its eggs and larvae serve as intermediary hosts and prey for rearing natural enemies in Insectaries. This study investigates the environmental factors influencing the rearing of E. kuehniella in Insectaries, focusing on diets, temperature, photoperiod, and humidity. Optimal diets, particularly combinations of wheat flour, wheat bran, and cornmeal, positively impact growth, reproduction, and egg quality. Temperature, a key factor, shows that 25–30°C provides the best conditions for growth and development, whereas temperatures above 35°C reduce survival and reproduction rates. Photoperiod influences development and reproduction, with a 16L: 8D cycle accelerating growth and development. Additionally, a relative humidity of 50–70% enhances the quality of larvae, pupae, and adults. This study demonstrates that optimizing these environmental factors can improve the efficiency of E. kuehniella in biological pest control systems, reduce costs, and increase the productivity of insect rearing in insectaries. However, biotic and abiotic factors, such as ants, braconid wasps, and pathogens, can significantly negatively affect growth and reproduction. Effective management of these factors, including ant control, preventing parasitoid intrusion, and disease prevention, is essential for optimizing the production process of E. kuehniella eggs.
.

Keywords

Main Subjects


Abroun, P., Mousavi, S.Gh., Ashouri, A. & Gishani, H. 2013. Effect of different quality of Ephestia kuehniella on the parasitism of Trichogramma brassicae. The 1st National Conference on Sustainable Agriculture and Natural Resources, 1–8.
Ajamhassani, M. & Amiri Jami, S. 2020. Effect of ascorbic acid, sorbitol and mannitol carbohydrates on feeding indices and immune system of Ephestia kuehniella (Lepidoptera: Pyralidae). Biocontrol in Plant Protection, 7(2): 77–90.
Ayvaz, A. & Karabörklü, S. 2008. Effect of cold storage and different diets on Ephestia kuehniella Zeller (Lep.: Pyralidae). Journal of Pest Science, 81: 57–62.
Ayvaz, A., Sagdic, O., Karaborklu, S. & Ozturk, I. 2010. Insecticidal activity of the essential oils from different plants against three stored–product insects. Journal of Insect Science, 10(1): 21.
Bahmani, N., Latifian, M., Ostovan, H., & Hesami, S. (2020). Pathogenic effects of Beauveria bassiana and Bacillus thuringiensis on the population dynamics of Ephestia kuehniella. Egyptian Journal of Biological Pest Control, 30: 1–9.
Baker, J.E. & Fabrick, J.A. 2000. Host hemolymph proteins and protein digestion in larval Habrobracon hebetor (Hymenoptera: Braconidae). Insect Biochemistry and Molecular Biology, 30(10), 937–946.
Bandani, A. 2013. Insect physiology: digestion, excretion, symbiotic microorganisms, metabolism. Tehran University Press, Tehran, pp. 186, 212.
Boukedi, H., Hman, M., Khedher, S.B., Tounsi, S. & Abdelkefi–Mesrati, L. 2020. Promising active bioinsecticides produced by Bacillus thuringiensis strain BLB427. World Journal of Advanced Research and Reviews, 8(1): 026–035.
Cox, P.D. & Bell, C.H. 1991. Biology and ecology of moth pests of stored foods. In: Gorham, J. R. ed. Ecology and management of food–industry pests (FDA technical bulletin number 4). Gaithersburg, Maryland, USA: The Association of Official Analytical Chemists: 181–193.
Danks, H.V. 1987. Insect dormancy: an ecological perspective. National Museum of Natural Science, Biological Survey of Canada (Terrestrial Arthropods), 1: 439–439.
Davoudi, A., Moayeri H.R. & Kavousi, O. 2018. Effect of diets containing of sesame, soybean and rapeseed meal on life table parameters of the flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae). Plant Pest Research. 8(3): 59–73
Farag, N.A., Ismail, I.A., Elbehery, H.H.A., Abdel–Rahman, R.S. & Abdel–Raheem, M.A. 2015. Life table of Bracon hebetor Say (Hymenoptera: Braconidae) reared on different hosts. International Journal of ChemTech Research, 8(9): 123–130.
Hölldobler, B. & Wilson, E.O. 1990. The ants. Harvard University Press.732 P.
Iatrou, S.A., Kavallieratos, N.G., Palyvos, N.E., Buchelos, C.T. & Tomanović, S. 2010. Acaricidal effect of different diatomaceous earth formulations against Tyrophagus putrescentiae (Astigmata: Acaridae) on stored wheat. Journal of Economic Entomology, 103(1): 190–196.
Jacob, T.A. Cox, P.D. 1977.The influence of temperature and humidity on the life–cycle of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Products Research, 13(3): 107–118
Jallouli, W., Abdelkefi–Mesrati, L., Tounsi, S., Jaoua, S. & Zouari, N. 2013. Potential of Photorhabdus temperata K122 bioinsecticide in protecting wheat flour against Ephestia kuehniella. Journal of Stored Products Research, 53: 61–66.
Latifian, M. & Bahmani, N. 2024. Adaptation and establishment of Habrobracon hebetor Say in the population of stored moth pests of date, Ephestia kuehniella Zeller and Plodia interpunctella Hübner. Egyptian Journal of Biological Pest Control, 34(1): 16.
Lynn, D.E. & Ferkovich, S.M. 2004. New cell lines from Ephestia kuehniella: characterization and susceptibility to Baculoviruses. Journal of Insect Science, 4(1): 9.
Magrini, E.A., Botelho, P.S.M., Parra, J.R.P. & Haddad, M.L. 1993. Comparison of artificial diets for mass rearing Anagasta kueniella Zeller (Lepidoptera: Pyralidae). Anais da Sociedade Entomologica do Brasil, 22(2): 361–371.
Malkeshi, S.H., Mohaghegh, J., Talaei Hassanloueii, R. & Allahyari, H. 2018. A comparative study on demography of predatory bug, Nesidiocoris tenuis feeding on Ephestia kuehniella and Tuta absoluta eggs. Biological Control of Pests & Plant Diseases, 7(2): 17–30.
Malysh, J.M., Vorontsova, Y.L., Glupov, V.V., Tsarev, A.A. & Tokarev, Y.S. (2018). Vairimorpha ephestiae is a synonym of Vairimorpha necatrix (Opisthosporidia: Microsporidia) based on multilocus sequence analysis. European Journal of Protistology, 66: 63–67.
Mehrkhou, F. & Tarlack, P. 2016. Demography of the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae) on different wheat cultivars. 83(2): 161–170.
Mirabi Moghaddam, R., Sadeghi, R. & Taghizade, M. 2016. Efficacy of ozone against Ephestia kuehniella (Lepidoptera: Pyralidae) and on the quality of raisin. Journal of Entomological Society of Iran, 36(1): 49–59.
Mirhoseini Moghadam, M. & Hesami, S. 2022. Effect of different amount of flour moth, Anagasta kuehniella eggs and second feeding on its larva production in insectarium condition. Plant Pest Research, 11(4): 63–75.
Moghadamfar, Z. & Pakyari, H. 2018. Effect of photoperiod on biology of Ephestia kuehniella (Lepidoptera: Pyralidae) under laboratory condition. Journal of Entomological Society of Iran, 38(1): 71–79.
Moghadamfar, Z., Pakyari, H. & Amir–Maafi, M. 2020. Age–stage, two–sex life table of Ephestia kuheniella (Lepidoptera: Pyralidae) at different constant temperatures. Crop Protection, 137: 105200.
Mostaghimi, N., Fathi, S.A.A. & Nouri Ganbalani, G. 2010. Functional response of Habrobracon hebetor (Say) (Hymenoptera: Braconidae) to various densities of two hosts, Ephestia kuehniella Zeller and Plodia interpunctella Hubner (Lepidoptera: Pyralidae). Iranian Journal of Plant Protection Science, 41(1):1–8.
Özder, N. & Kara, G. 2010. Comparative biology and life tables of Trichogramma cacoeciae, T. brassicae and T. evanescens (Hymenoptera: Trichogrammatidae) with Ephestia kuehniella and Cadra cautella (Lepidoptera: Pyralidae) as hosts at three constant temperatures. Biocontrol Science and Technology, 20(3): 245–255.
Pakyari, H., Amir–Maafi, M. & Moghadamfar, Z. 2016. Oviposition model of Ephestia kuehniella (Lepidoptera: Pyralidae). Journal of Economic Entomology, 109(5): 2069–2073.
Pakyari, H., Amir–Maafi, M., Moghadamfar, Z. & Zalucki, M. 2019. Estimating development and temperature thresholds of Ephestia kuehniella: toward improving a mass production system. Bulletin of Entomological Research, 109(4): 435–442.
Perfecto, I. 1991. Ants (Hymenoptera: Formicidae) as natural control agents of pests in irrigated maize in Nicaragua. Journal of Economic Entomology, 84(1): 65–70.
Rahmani, A., Sarraf Moayeri, H.R. & Kavousi, O. 2019. Effect of different diets with oil additives on life table parameters of the flour moth Anagasta kuhniella (Zeller). Plant Pest Research, 9(3): 73–87.
Razmjou, J., Afshari, F. & Abedi, Z. 2022. Population growth traits of the flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae) and their relationship with some physical and biochemical properties of various maize hybrids Journal of Entomological Society of Iran, 42(2): 101–109.
Rees, D. 2003. Insects of stored products. CSIRO Publishing, London. pp. 181.
Rodriguez–Mendez, H., Cabello–Garcia, T. & Vargas, P. 1988. Influence of diet and light on the longevity, fecundity and fertility of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Boletin de Sanidad Vegetal Plagas, 14(4): 561–566.
Soltani Nezhad, P., Shirvani, A. & Rashki, M. 2016. Effect of different diets on development and reproduction of Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Plant Pest Research, 6(1): 13–22.
Tahernia, S., Sarraf Moayeri, H., Kavousi, A.U.R.A. N.G., Arbab, A. & Davoudi, A. 2020. The influence of photoperiod on two–sex life table parameters of the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae). Journal of Entomological Society of Iran, 40(1): 1–17.
Tavalla, S. & Ajamhassani, M. 2023. The effect of sugar supplements on some biological and nutritional characteristics of the Mediterranean flour moth Ephestia kuehniella (Lepidoptera: Pyralidae). BioControl in Plant Protection, 11(1): 149–154.
Tillman, P.G. & Cate, J.R. 1993. Effect of host size on adult size and sex ratio of Bracon mellitor (Hymenoptera: Braconidae). Environmental Entomology, 22(3): 143–148.
Vanderzant, E.S. 1968. Dietary requirements of the bollworm, Heliothis zea (Lepidoptera: Noctuidae), for lipids, choline, and inositol and the effect of fats and fatty acids on the composition of the body fat. Annals of the Entomological Society of America, 61(1): 120–125.
Yazdanian, M., Talebi, C.P. & Hadad, I.K. 2005. Observations on the post–emergence and mating behaviours of adults of the Mediterranean flour moth, Anagasta kuehniella (Zeller) and investigation on some of their reproductive properties, 12(5): 167–176.
Zavodska, R., Fexova, S., von Wowern, G., Han, G.B., Dolezel, D. & Sauman, I. 2012. Is the sex communication of two Pyralid moths, Plodia interpunctella and Ephestia kuehniella, under circadian clock regulation Journal of Biological Rhythms, 27(3): 206– 216.