The effects of two DAPG-producing isolates of Pseudomonas fluorescens in controlling cucumber root and crown rot caused by Phytophthora drechsleri

Document Type : Research Paper

Abstract

Phytophthora drechsleri is an important soilborne plant pathogen in Iran that causes root and crown rot disease in cucurbits. Recently, the biological suppression of this disease by the application of Plant Growth Promoting Rhizobacteria (PGPR) such as fluorescent pseudomonads as an alternative method for chemical fungicides has been regarded. In the present study, antagonistic effects of two DAPG-producing isolates of Pseudomonas fluorescens “F117 and F133” against the pathogenic fungal agent (P. drechsleri) in In vitro and greenhouse with different methods were investigated. The results showed that these isolates by employing several biocontrol mechanisms such as antibiosis, production of siderophore and hydrogen cyanide as well as secretion of protease, lipase and phosphates solubilization enzymes showed an effective control against the disease causal agent in the laboratory and the greenhouse conditions.

 


 

Keywords

Main Subjects


Alavi, A. & Strange, R.N. 1979. A baiting for isolating Phytophthora drechsleri, causal agent of crown rot of Cucumis species in Iran. Plant disease reporter, 63: 1084−1086.
Alavi, A. & Strange, R.N. 1982. The relative susceptibility of some cucurbits to an Iranian isolate of Phytophthoradrechsleri. Plant Pathology, 31: 221−227.
Alexander, D.B. & Zuberer, D.A. 1991. Use of chrome azurol S reagent evaluates siderophore production by rhizosphere bacteria Biology and Fertility of Soils, 12: 39-45.
Alstrom, S. & Burns, R.G. 1989. Cyanid production by rhizobacteria as a possible mechanism of plant growth inhibition. Biology and Fertility of Soils, 7: 232-238.
Blumer, C., Haas, D. 2000. Mechacism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173: 170-177.
Brazelton J.N., Pfeufer, E.E., Sweat, T.A., Mcspadden Gardener, B.B. & Coenen, C. 2008. 2,4-Diacetylphloroglucinol alters plant root development. Molecular Plant-Microbe Interactions, 21: 1349–1358.
Castaneda, G.C., Munoz, T.J.J. & VIDEA, J.R.P. 2005. A spectrophotometric method to determine the siderophore production by strains of fluorescent Pseudomonas in the presence of copper and iron. Microchemical Journal, 81: 35-40.
Das, I.K., Indira, S., Annapurna, A. & Prabhakar, Seetharama, N. 2008. Biocontrol of charcoal rot in sorghum by fluorescent pseudomonads associated with the rhizosphere. Crop Protection, 27: 1407-–1414.
De Souza, J., Arnould, T., Deulvot, C., Lemanceau, P., Gianinazzi- Pearson, V. & Raaijmakers, J.M.  2003. Effect of 2,4-diacetylphloroglucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology, 93: 966–975.
De Wager, L.A., Van Der Bij, A.J.,  Dekker, L.C., Simons, M., Wijffelman, C.A. & Lugtenberg, B.J.J. 1995. Colonization of the rhizosphere of crop plants by plant beneficial pseudomonads. FEMS Microbiology Ecology, 17: 221-22.
De Werra, P., Péchy-Tarr, M., Keel, C. & Maurhofer, M. 2009. Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Applied and Environmental Microbiology, 75: 4162–4174.
Delany, I., Sheehan, M.M., Fenton, A., Bardin, S., Aarons, S. & O'gara, F. 2000. Regulation of production of the antifungal metabolite 2,4- diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology, 146: 537-546.
Dowling, D.N. & O’gara, F. 1994. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnology, 12: 133−144.
Duffy, B.K. & Défago, G. 1997. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology,87: 1250-1257.
Ellis, R.J., Timms-Wilson, T.M. & Bailey, M.J. 2000. Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Applied and Environmental Microbiology, 2(3): 247-284.
Ershad, Dj. 1992. Phytophthora Species in Iran (Isolation, Purification, Identifition). Agriculture Research Organization, pp. 217.
Erwin, D.C. & Ribeiro, O.K. 1996. Phytophthora capsici. Pages 262-268 in: Phytophthora Diseases Worldwide. American Phytopathological Society, St. Paul, MN.
Farzaneh, M., Shi, Z.Q., Ghassempour, A., Sedaghat, N., Ahmadzadeh, M., Mirabolfath M. & Javan-Nikkhah, M. 2012. Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated frompistachio nuts of Iran. Food Control, 23:100-106.
Fiddaman, P.J. & Rossall, K. 1994. Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. Journal of Applied Bacteriology, 76: 395-405.
Ghafelebashi, S.S., Jamali, F. & Ahmadzadeh, M. 2014. Study of some biological and biochemical properties of Pseudomonas fluorescens UTPF68, biocontrol agent against Phytophtora drechsleri on cucumber. Biological Control of Pests & Plant Diseases, 3 (2): 105-106. (In Persian with English summary).
Haas, D. & Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature reviews, Microbiology, 3: 307–319.
Hagedorn, C., Gould, W.D. & Bardinelli, T.R. 1998. Rhizobacteria of cotton and their repression of seedling disease pathogens. Applied and Environmental Microbiology, 55: 2793−2797.
Harrison, L.A., Letendre, L., Kovacevich, P., Pierson, E. & Weller, D.M. 1993. Purification of an antibiotic effective against Gaeumanomyces graminis var. tritici produced by a biocontrol agent Pseudomonas aureofaciens. Soil Biology & Biochemistry, 25: 215-221.
Hwang, B.K. & Kim, C.H. 1995. Phytophthora blight of pepper and its control in Korea. Plant Disease, 79: 221−227.
Kaur, R., Macleod, J., Foley, W. & Nayudu, M. 2006. Gluconic acid: An antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry, 67: 595–604.
Keel, C. & Defago, G. 1997. Interactions between beneficial soil bacteria and root pathogens: mechanism and ecological imoact. pp. 27-46. In: Multitrophic Intractions in Terrestrial Systems. Gange, A.C. & Brown, V.K. (eds.), Blackwell Scientific Publishers, London, England.
Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., Wirthner, P., Haas, D. & Défago, G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2, 4- diacetylphloroglucinol. Molecular Plant-Microbe Interactions, 5: 4−13.
Kraus, J. & Loper, J.E. 1995. Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Applied and Environmental Microbiology, 61: 849- 854.
Kreutzer, W.A., Bodine, E.W. & Durrell, L.W. 1940. Cucurbit diseases and rot of tomato fruit caused by Phytophthora capsici. Phytopathology, 30: 972−976.
Lamour, K.H. & Hausbeck, M. K. 2000. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology, 90: 396−400.
Loper, J.E. & Henkels, M.D. 1999. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Applied and Environmental Microbiology, 65: 5357-5363.
Maleki, M., Mokhtarnejad, L. & Mostafaee, S. 2011. Screening of rhizobacteria for biological control of cucumber root and crown rot caused by Phytophthora drechsleri. The Plant Pathology Journal, 27(1): 78-84.
Mansoori, B. & Banihashemi, Z. 1982. Evaluating cucurbit seedling resistance to Phytophthora drechsleri. Plant Disease, 66: 373-376.
Marilley, L. & Arango, M. 1990. Phytopathogenic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Applied Soil Ecology, 13: 127-136.
Maurhofer, M., Keel, C. & Defago, G. 1995. Infuence of plant species on disease suppression by Pseudomonas fluorescens strain CHA0 with enhanced production. Plant Pathology, 44: 40-50.
Mavrodi, O.V., Mcspadden Gardener, B.B., Mavrodi, D.V., Bonsall, R.F., Weller D.M. & Thomashow, L.S. 2001. Genetic diversity of phlD from 2, 4- diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology,91: 35-43.
Mcspadden Gardener, B.B., Mavrodi, D.V., Thomashow, L.S. & Weller, D.M. 2001. A rapid polymerase chain reactionbased assay characterizing rhizosphere populations of 2,4- diacetylphloroglucinol producing bacteria. Phytopathology, 91: 44−54.
Mcspadden Gardener, B.B., Schroeder, K.L., Kalloger, S., Raaijmakers, J.M., Thomashow, L.S. & Weller, D.M. 2000. Genotypic and phenotypic diversity of phlD containing Pseudomonas strains isolated from the rhizosphere of wheat. Applied and Environmental Microbiology,66: 1939−1946.
Meyer, S.L.F., Halbrendt, J.M., Carta, L.K., Skantar, A.M., Liu, T., Abdelnabby H.M.E. & Vinyard, B.T. 2009. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to Plant-parasitic and Bacterial-feeding Nematodes. Journal of Nematology, 41(4): 274–280.
Niknejad Kazempour, M. 2006. Effect of Pseudomonas fluorescens isolates on Rhizoctonia solani Kühn the Causal Agent of Sheath Blight on Rice. Journal of Agricultural Sciences, 12 (4): 729-744. (In Persian with English summary).
O 'sullivan, M., Stephens P.M. & O’gara, F. 1991. Extracellular protease production by fluorescent Pseudomonas spp. and the colonization of sugarbeet roots and soil. Soil Biology & Biochemistry, 23: 623-627.
Ristaino, J.B. & Johnston, S.A. 1999. Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Disease, 83: 1080−1088.
Schippers, B., Bakker, A.W. & Bakker, A.H.M. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Phytopathology,  25: 39-59.
Shanahan, P., O’ Sullivan, D.J., Simpson, P., Glennon, J.D., & O’Gara, F. 1992. Isolation of 2, 4-diactylphlorogluciol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production: Applied and Environmental Microbiology, 58(1): 353-358.
Sharifi-Tehrani, A., Zala, M., Natsch, A., Moënne-Loccoz, Y. & Defago, G. 1998. Biocontrol of soil-born fungal plant diseases by 2,4-diacetylphloroglucinol-producting fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. European Journal of Plant Pathology, 104: 631-643.
Shirzad, A., Fallahzadeh-Mamaghani, V. & Pazhouhandeh, M. 2012. Antagonistic potential of fluorescent pseudomonads and control of crown an root rot of cucumber caused by Phythophtora drechsleri. The Plant Pathology Journal, 28(1): 1-9.
Sierra, G.A. 1957. Simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek, 23: 15–22.
Sperber J.I. 1958. The incidence of apatite-solubilizing organism in the rhizosphere and soil. Australian Journal of Agricultural Research, 9: 781-778.
Teniola, O.D., Addo, P.A., Brost, I.M., Farber, P., Jany, K.D., Alberts, J.F., Van Zyl, W.H., Steyn, P.S. & Holzapfel, W.H. 2005. Degradation of aflatoxin B(1) by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM 44556(T). International Journal of Food Microbiology, 105: 111-117.
Vessey, K.J. 2003. Plant growth–promoting rhizobacteria as biofertilizers. Plant and Soil. 255: 571 – 586.
Voisard, C., Keel, C., Haas, D. & De'fago, G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobitic conditions. The EMBO Journal, 8: 351-358.
Wang, C., Ramette, A., Punjasamarnwong, P., Zala, M., Natsch, A., Moenne-Loccoz, Y. & Defago, G. 2001. Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated biocontrol pseudomonads of worldwide origin. FEMS Microbiology Ecology, 37: 105−116.
Weller, D.M. & Cook, R.J. 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology, 78: 463-469.
Weller, D.M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria.  Annual Review of Phytopathology, 26: 379-407.