بررسی اثر بیمارگری سویه‌های Bacillus thuringiensis بومی خاک‌های زراعی ایران روی پروانه برگ خوار مصری پنبه Spodoptera littoralis

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش گیاه‌پزشکی، دانشکده علوم کشاورزی، واحد علوم و تحقیقات فارس، دانشگاه آزاد اسلامی، شیراز، ایران

2 بخش تحقیقات کنترل بیولوژیک، ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﮔﻴﺎه ﭘﺰﺷﻜﻲ، ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت آﻣﻮزش و ﺗﺮوﻳﺞ ﻛﺸﺎورزی، ﺗﻬﺮان، اﻳﺮان

3 بخش گیاه‌پزشکی، دانشکده علوم کشاورزی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

4 بخش تحقیقات بیوتکنولوژی میکروبی، پژوهشگاه بیوتکنولوژی کشاورزی ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

پروانه برگ­خوار مصری پنبه (Boisduval) Spodoptera littoralis، آفتی همه چیزخوار با دامنه میزبانی وسیع است که همه ساله خسارت قابل توجهی به محصولات کشاورزی وارد می­کند. مشخص شده است که همه سویه­های Bacillus thuringiensis(Bt) روی این آفت مؤثر نیستند و سویه­های کمی با توجه به توکسین‌های پروتئینی خود روی آن مؤثرند. هدف از اجرای تحقیق حاضر، دستیابی به سویه­های Btبومی با قابلیت کنترل پروانه برگ­خوار مصری و بررسی تاثیر محیط کشت تکثیر باکتری بر قابلیت حشره‌کشی سویه­های منتخب بود. بدین منظور، قدرت بیمارگری 118 سویه بومی Bt(رشد داده شده در محیط R2NB) روی لاروهای پنج روزه پروانه برگ­خوار مصری پنبه در دمای 27 درجه سلسیوس روی غذای مصنوعی بررسی و غربال شدند. درصد مرگ و میر 118 سویه باکتری با غلظت 103 اسپور در میلی‌لیتر نشان داد که چهار سویه GON–9، QM–2، GN–13 و QM–1 به ترتیب با 33/93، 70، 67/46 و 33/43 درصد، بالاترین میزان مرگ و میر و سویه هایGN–12 ،EN–2 ،GON–12 ،GON–7،CHI–2 ،AGI–7 ،AGI–3  وAGI–2  روی لاروهای S. littoralis بی‌تأثیر بودند. سپس سویه­های مؤثر در دو محیط کشتNutrient Broth و R2NB تکثیر شده، روی آفت مذکور ارزیابی شدند. نتایج نشان داد چهار سویه منتخب در محیط کشت R2NB نسبت به NB روی لاروهای پروانه برگ­خوار مصری اثر کشندگی بیشتری داشتند و تفاوت آنها معنی‌دار بود. همچنین محتویات ژن­های cry خصوصا ژن cry2Ab در سویه­های مؤثر مورد بررسی و ردیابی قرار گرفت. نتایج واکنش زنجیره­ای پلیمراز نشان داد که سویه‌های QM–1، QM–2 و GON–9 حاوی ژن cry2Ab هستند.

کلیدواژه‌ها


Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. Journal of Economic Entomology. 18: 265–267.
Alfazairy, A.A., El–Ahwany, A.M.D., Mohamed, E.A., Zaghloul, H.A.H. & El–Helow., E.R. 2013. Microbial control of the cotton leafworm Spodoptera littoralis (Boisd.) by Egyptian Bacillus thuringiensis isolates. Folia Microbial, 58: 155–162.
Aly, N.A.H., Soliman. E.A.M., El–Kawokgy, T. 2008. RAPD identification of local Bacillus thuringiensis isolates toxic to Spodoptera littoralis and Culex pipiens using universal primers for cry genes. Middle Eastern and Russian Journal of Plant Science Biotechnology, 2(2): 60–66.
Arrizubieta, M., William, T., Caballero, P., Simon, O. 2014. Selection of a nucleopolygedrovirus isolate from Helicoverpa armigera as the basis for a biological insecticide. Pest Management Science, 70(6): 967–976.
Arthur, F.H. & Philips, T.W. 2003. Stored–product insect pest management and control, pp. 341–358. In Y.H. Hui, B.L., Bruinsma, J.R., Gorham, W.K., Nip, P.S., Tong, P Ventresca., (eds.), Food plant sanitation. Marcel Dekker, New York.
Azizoglu, U., Salehi Jouzani, G., Yilmaz, N., Baz, E. & Ozkok, D. 2020. Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: A review. Science of the Total Environment. PP.139–169.
Bai, C., Degheele. D., Janses., S., Lambert., B. 1993. Activity of insecticidal proteins and strans of Bacillus thuringiensis against Spodoptera exempta (Walker). Journal of Invertebrate Pathology. 62: 211–215.
Bravo, A., Gill., S.S., Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 49(4): 423–435.
Bruce, M.J., Gatsi, R., Crickmore, N., Sayyed, A.H. 2007. Mechanisms of resistance to Bacillus thuringiensis in the Diamond back Moth. Biopesticides International. 3(1): 1–12.
Burges, H.D. & Thompson, E.M. 1971. Standardization and assay of microbial insecticides. In: Burges, H.D., Hussey, N.W. (eds.), Microbial control of insects and mites. Academic., New York, p 709.
Ҫakici, F.Ӧ., Sevim. A., Demirbağ, Z., Demir., İ. 2014. Investigation interal bacteria of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) Larvae and some Bacillus strains as biocontrol agents. Turkish Journal of Agriculture and Forestry. 38: 99–110.
Dahi, H.F. 2012. Efficacy of Bt transgenic egyption cotton varieties expressing cry1Ac and cry2Ab genes against Spodoptera littoralis (Boisd). Journal of American Sciences. 8(3): 457–463.
Dulmage, H.T. 1970. Insecticidial activity of HD–1, a new isolate of Bacillus thuringiensis var. alesti. Journal of Invertebrate Pathology. 15: 232–239.
Dutton, A., Romeis, J. Bigler, F. 2003. Assessing the risks of insect resistant transgenic plants on entomophagous arthropods: Bt–maize expressing Cry1Ab as a case study. Biocontrol. 48: 611–636.
Dutton, A., Romeis, J., Bigler, F. 2005. Effects of Bt maize expressing Cry1Ab and Bt spray on Spodoptera littoralis. Entomologica Experimentalis Et Applicata. 114: 161–169.
Federici, B.A. 1997. Baculovirus Pathogenesis. University of California at Riverside, Department of Entomology and Interdepartmental Graduate Program in Genetics, Riverside California.
Greenplate, J.T. 1999. Quantification of Bacillus thuringiensis insect control protein Cry1Ac over time in Bollgard cotton fruit and terminals. Journal of Economic Entomology. 92: 1377–1383.
Hatem, A.E., Aldebis, H.K., Osuna, E.V. 2011. Effects of Spodoptera littoralis granulovirus on the development and reproduction of cotton leafworm, S.littoralis. Biological Control. 59: 192–199.
Hatem, A.E., Reda, A.M. Amer., Osuna. E.V. 2012. Combination effects of Bacillus thuringiensis Cry1Ac toxin and nucleopolyhedrovirus or granulovirus of Spodoptera littoralis on cotton leafworm. Eyptian Journal of Biological Pest control. 22(2): 115–120.
Jafari, M., Noruzi, P., Malbobi, M.A., Valizadeh, M., Mohammadi, SA. 2009. Transformation of cry1Ab gene to sugar beet (Beta vulgaris L.) by Agrobacterium and development of resistance plant against  Spodoptera littoralis. Sugar Beet Journal. 2 (24): 37–55.
Jua´rez–Pe´rez, V.M., Ferrandis, M.D., Frutos, R. 1997. PCR–based approach for detection of novel Bacillus thuringiensis cry genes. Applied and Environmental Microbiology. 63: 2997–3002.
Keller, M., Sneh, B., Strizhov, N., Prudovski, E., Regev, M., Koncz, C., Schell, J. Zilberstein. 1996. Digestion δ–endotoxin by midgut proteases may explain reduced sensitivity of advanced instars of Sodoptera littoralis to Cry1C. Insect Biochemistry and Molecular Biology. 26: 365–373.
Khodaverdi, H., Sahragard, A., Amirmoafi, M., Mohaghegh, J. 2010. Study of demographic parameters of Egyptian cotton leafworm on artificial diet in laboratory conditions. Iranian Journal of Plant Protection Science. 41(1): 61–69.
Lacey, L.A., Frutos, R., Kaya, H.K., Vail, P. 2001. Insect pathogens as biological control agents: do they have a future? Biological Control. 21: 230–248.
Lacey, L.A., Grzywacz, D., Shapiro–Ilan, D.I., Frutos, R., Brownbridge, M. and Goettel, M.S. 2015. Insect pathogens as biological control agents: Back to the future, Journal of Invertebrate pathology. 132: 1–41.
Liao, C., Heckel, D.G., Akhurst, R. 2009. Toxicity of Bacillus thuringiensis insecticidial proteins for Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae), major pests of cotton. Journal of Invertebrate Pathology. 80: 55–66.
Madani, S. 2016. Get to know the Egyptian cotton leafworm  better. http://fspmarket.com/tutoralis/Spodoptera–littoralis–bois/ [Accessed 5 July 2016].
Magholifard, Z., Heami, Sh., Marzban, R., Salehi Jouzani, G. 2018. Pathogenic effects of three isolates of Nucleopolyhedrovirus, Spodoptera littoralis NPV, Helicoverpa armigera NPV, Spodoptera litura NPV on life stages of Egyptian cotton leafwormSpodoptera littoralis. Entomology and Phytopathology. 85(2):203–218.
Magholifard, Z., Heami, Sh., Marzban, R., Salehi Jouzani, G. 2020. Individual and combined biological effects of Bacillus thuringiensis and Multicapsid Nucleopolyhedrovirus on the biological stages of Egyptian cotton leafworm, Spodoptera littoralis (B.) (Lep.:Noctuidae). Journal of Agricultural Science and Technology. 22(2):465–476.
Mansour, S.A., Foda, M.S., Aly, A.R. 2012. Mosquitocidal activity of two Bacillus bacterial endotoxins combined with plant oila and conventional insecticides. Industrial Crops and Products. 35: 44–52.
Marzban, R. 2002. Comparison bioassay of several native strains of Btand kurstaki serotype on Plodia interpunctella. Journal of Plant Diseases and protection. 70: 29–36.
Marzban, R., Salehi Jouzani, G. 2006. Isolation of native Bacillus thuringiensis Berliner isolates from the agricultural soils of Iran. Journal of Agricultural Science. 1(2): 47–54.
Marzban R., Saberi F., Shirazi M.M., 2016. Microfiltration and Ultrafiltration of Bacillus thuringiensis Fermentation broth: Membrane performance and spore–crystal recovery approaches. Brazilian Journal Chemical Engineering. 33 (4): 783–791.
Nazerian, A., Jahangiri, R., Salehi Jouzani, G., Seifinejad, A., Soheilivand, S. Bagheri, O., Keshavarzi, M., Alamisaeid, K. 2009. Coleoptera–specific and putative novel cry genes in Iranian native Bacillus thuringiensis collection. Journal of Invertebrate Pathology. 102: 101–109.
Novan A. 1985. Spodoptera littoralis. PP. 469–475. In Singh, P. and Moore, R. F. (eds.) Handbook of Insect Rearing. Elsivire. Amesterdam.
Qayyum, M.A., Wakil, W., Arif, M.J., Sahi, Sh.T. 2015. Bacillus thuringiensis and Nuclear Polyhedrosis Virus for the Enhanced Bio–cotrol of Helicoverpa armigera. International Journal Agricultural and Biology. 17(5): 1043–1048.
Robinson, G.S., Ackery., P.R. Kitching, I.J., Beccaloni, G.W., Hernández, L.M. 2010. Hosts a database of the world Lepidopteran hostplants. Natural History Museum, London. Available from http://www. nhm.ac.uk/hosts [Accessed 14 January 2012].
Salama, H.S., Foda, M.S., Sharaby, A. 1989. A proposed new biological standard for bioassay of bacterial insecticides versus Spodoptera spp. Tropical Pest Management. 35: 326–330.
Salehi Jouzani, G., Abad, A.P., Seifinejad, A., Marzban, R., Kariman, K., Maleki, B. 2008. Distribution and diversity of Dipteran–specific cry and cyt genes in native Bacillus thuringiensis strains oBtained from different ecosystems of Iran. Journal of Industrial Microbiology & Biotechnology. 35(2): 83–94.
Salehi Jouzani, G., Valijanian, E. and Sharafi, R. 2017. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Applied Microbiology Biotechnology. 101(7): 2691–2711.
SAS Institute. 1999. SAS Online Doc®. Version 8. Cary, NC.
Seifinejad, A., Salehi Jouzani, G., Hosseinzadeh, A., Abdmishani, C. 2008. Characterization of Lepidoptera–active cry and vip genes in Iranian Bacillus thuringiensis strain collection. Biological Control. 44(2): 216–226.
Sorour, M.A., Khamiss, O., Abd El–Wahab, A.S., El–Sheikh., M.A.K., Abul–Ela, S. 2011. An Economically modified semi–synthetic diet for mass rearing the Egyptian Cotton LeafWorm Spodoptera littoralis. Academic Journal of Entomology. 4(3): 118–123.
SPSS. 1998: SPSS User’s Guide. SPSS, Inc., Chicago.
Svobodová, Z., Romeis, J., Habuštová, O.S., Meissle, M. 2016. Susceptibility of Spodoptera littoralis (Boisd.) to lepidopteran active Cry proteins in stacked Bt maize. Available from https: //www.researchgate.net/publication/304019535 [accessed 12 January 2018].
Ullah, L., Asif, M., Arslan, M., Ashfaq, M. 2014. Temporal expression of Cry1Ab/c protein in Bt–cotton varieties, their efficacy against Helicoverpa armigera (Lepidoptera: Noctuidae) and population dynamics of suckingarthropods on them. International Journal of Agricultural and Biology. 16: 879–885.
Wei, J.Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S., Aroian, R.V. 2003. Bacillus thuringiensis crystal proteins that target nematodes. Proceeding of the National Academy of Sciences. 100(5): 2760–2765.
 Xu, J., Shelton, A.M., Cheng, X. 2001. Variation in susceptibility of Diadegma insulare to permenthrin. Journal of Economic Entomology. 99: 541–546.