بهینه‌سازی تولید آفت‌کش بیولوژیک Bacillus thuringiensis به روش تاگوچی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری، گروه گیاه‌پزشکی،واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 دانشیار، موسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.

3 استادیار، گروه حشره شناسی کشاورزی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، ایران

4 کارشناس ارشد، موسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.

10.22092/bcpp.2023.362185.332

چکیده

پس از دست‌یابی به استرین‌های برتر Bt از لحاظ قدرت بیمارگری و دامنه میزبانی، تهیه محیط‌های کشت ارزان‌قیمت برای تولید اسپور و کریستال در فرمانتور آزمایشگاهی به‌عنوان مدل اولیه، و تولید انبوه آن در بیوراکتورهای با مقیاس صنعتی از اهمیت ویژه‏ای برخوردار است. در این تحقیق سعی شده است تا با استفاده از نهاده‌های ارزان قیمت مانند پسماندها و فرآورده‌های فرعی صنایع کشاورزی بستر غذایی مناسب و بهینه‌ای برای رشد Bt فراهم شود و میزان تولید این باکتری با استفاده از این مواد مورد ارزیابی قرار گیرد. در این تحقیق پسماندها و فرآورده‌های فرعی صنایع کشاورزی به عنوان محیط کشت غذایی به‌صورت عصاره و به‌‌صورت مایع برای تکثیر Bt kurstaki سویه بومی 6R مورد بررسی قرار گرفت محیط‌های کشت به‌صورت تلفیقی از دو و سه محیط کشت با درصدهای متفاوت مورد ارزیابی قرار گرفتند و فرایند بهینه‌سازی با روش تاگوچی و با استفاده از نرم‌افزار Qualitek–4 انجام شد. نتایج آزمایشات و تجزیه تحلیل داده‌ها نشان داد که در محیط‌های کشت دوتایی سبوس گندم (منبع کربن) همراه با شربت ذرت با CFU/ml3/44 ×1010 ، سبوس گندم(منبع کربن) همراه با پودر ماهی با CFU/ml 5/5 ×109  و محیط‌های ترکیب سه‌تایی شامل سویا، شربت ذرت، پودر ماهی CFU/ml 3/98×1016 ، سویا، شربت ذرت، ملاس نیشکر CFU/ml 9/89×1016  و سبوس گندم، شربت ذرت و ملاس چغندرقند CFU/ml 9/29×1016  بهترین محیط کشت‌هایی بودند که بیشترین میزان تولید باکتری Bt را در شرایط آزمایشگاه داشتند. نتایج نشان داد، Bt حاصل از بسترهای دوتایی سبوس گندم و پودرماهی، سبوس گندم و شربت ذرت و بسترهای سه‌تایی سویا، شربت ذرت و پودرماهی؛ شربت ذرت، سویا و ملاس نیشکر؛ شربت ذرت، سبوس گندم و ملاس چغندر قند روی لارو سن سه برگخوار مصری Spodoptera littoralis صد درصد تلفات داده است.

کلیدواژه‌ها

موضوعات


Amin, G. & Alotaibi, S. 2008. Optimization of a fermentation process for bioinsecticide production by Bacillus thuringiensis. World Journal of Microbiology and Biotechnology, 24(11): 2465–2471.
Berbert–Molina, M.A., Prata, A.M.R., Pesssanha, L.G. & Silveria, M.M. 2008. Kinetics of Bacillus thuringiensis var. israelensis growth on high glucose concentrations. Journal of Industrial Microbiology and Biotechnology, 35(11): 1397–1404.
Brar, S.K. & Verma, M. 2005. Starch industry wastewater based stable Bacillus thuringiensis liquid formulation. Journal of economic entomology, 98(6):1890–1404.
Capalbo, D.M.F., Valicente, F.H. Marcus, I.O. & Pelizer. L.H. 2001. Solid–state fermentation of Bacillus thuringiensis var. tolworthi to control fall armyworm in maize, Journal of Biotechnology, 4(2): 155–168.
Dastpak, V., Marzban, R., Imani, S. & Kalantari, M. 2021: The effect of some food industrial wastes and byproducts on the development and insecticidal activity of Bacillus thuringiensis. Biocontrol in Plant Protection, 9(1): 1–12.
Dulmage, H.T. 1971. Production of delta–endotoxin by eighteen isolates of Bacillus thuringiensis serotype 3 in fermentation media. Journal Invertebrate. Pathology, 18: 353–358.
Fernando, H., Valicente, F.H. & Andre, H.C. 2008. Use of by–Products Rich in Carbon and Nitrogen as a Nutrient Source to Produce Bacillus thuringiensis (Berliner)–Based Biopesticide Neotropical Entomology, 37(6): 702–708.
FODA, M.S., ABU–SHADY, M.R., PRIEST, F.G. & EL–BENDARY, M.A. 2000. Physiological studies on pathogenic strains of Bacillus sphaericus. In: 10th Microbial conference, 12–14 November 2000, Cairo, Egypt.
Foda, M.S., Ismail, I.M., K. Moharam, M.E. & Sadek, K.H. H.A. 2002. A novel approach for production of Bacillus thuringiensis by solid state fermentation. Egypt. Microbiol, 37: 135–156.
Gharibi, D., Zouari, N., Trabelsi, H. & Jaoua, S. 2007. Improvement of Bacillus thuringiensis delta–endotoxin production by overcome of carbon catabolite repression through adequate control of aeration. Enzyme. Microbiology Technology, 40: 614–622.
Jayaraman, R. 2003. Influence of Carbon and Nitrogen Sources on the Growth and Sporlution of Bacillus thuringiensis var Galleriae for Biopesticide production. Chemical and Biochemical Engineering Quarterly, 17(3): 225–231.
Khanh Dang Vu, R.D., Tyagi, J.R., Valéro, R.Y. & Surampalli, J. 2009. Impact of different pH control agents on biopesticidal activity of Bacillus thuringiensis during the fermentation of starch industry wastewater. Bioprocess and Biosystems Engineering, 4: 511–519.
Kraemer–Schafhalter, A. & Moser, A. 1996. Kinetic study of Bacillus thuringiensis var. israelensis in lab–scale batch process. Bioprocess and Biosystems Engineering, 14(3): 139–144.
Lachhab, K. Tyag, R.D. & Valero, J.R. 2001. Production of Bacillus thuringiensis biopesticides using wastewater sludge as a raw material: effect of inoculum and sludge solids concentration. Process Biochemistry, 37: 197–208.
Marzban, R. 2012. Investigation on the suitable isolate and medium for production of Bacillus thuringiensis. Journal of Biopesticids, 5: 144–147.
Obeta, J.A.N. & Okafor, N. 1984 Medium for the production of primary powder of Bacillus thuringiensis subsp. israelensis. Applied Environmental Microbiology, 47: 863–867.
Poopathi, S. 2010. Novel Fermentation media for the production of mosquito pathogenic bacilli in mosquito control. Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, P: 349–358.
Saberi, F., Marzban, R., Ardjmand, M., Pajoum Shariati, F. & Tavakoli, O. 2023: Optimization of the Culture Medium, Fermentation Process and Effectiveness of Biopesticide from an Iranian Bacillus thuringiensis var. tenebrionis (BN2). Journal of Agricultural Science and Technology, 25(2): 469–484.
Saberi, F., Marzban, R. & Ardjmand, M. 2014: Optimization of Bacillus thuringiensis production process in lab. fermenter. Biological Control of Pests and Plant Diseases, 3(2): 165–172.
Saberi, F., Marzban, R., Ardjmand, M., Pajoum Shariati, F. & Tavakoli, O. 2020: Optimization of Culture Media to Enhance the Ability of Local Bacillus thuringiensis var. tenebrionis. Journal of the Saudi Society of Agricultural Sciences, 19(7): 468–475.
Saberi, F., Marzban, R., Ardjmand, M., Pajoum Shariati, F. & Tavakoli, O. 2020: Influence of carbon and nitrogen sources on the growth and sporulation of Bacillus thuringiensis var. tenebrionis. Biocontrol in Plant Protection, 7(2): 49–62.
Soccoll, C.R., Teresinha, E.V.P., Fendrich, R.C., Prochmannl, F.A., Radijiskumar, M., Blaskowski, M.M., de Almeidamelo, A.L., Barros, C.J. & Soccol, V.T. 2009. Development of a low–cost bioprocess for endotoxin production by Bacillus thuringiensis var. israelensis intended for biological control of Aedes aegypti. Brazilian archives of biology and technology, 52: 121–130.
Tianjian, X. 1995. Industrial production of Bt production and application. Wuhan, China.
Vimala Devi, P.S., Ravinder, T. & Jaidev, C. 2005. Cost–effective production of Bacillus thuringiensis by solid–state fermentation. Journal of Invertebrate Pathology, 88(2): 163–168.
Yezza, A. & Tyagi, R.D. 2005. Production of Bacillus thuringiensis based biopesticides in barch and fed batch cultures using wastewater sludge as a raw material. Journal of chemical technology and biotechnology, 80(5): 502–510.
Zuoari, N. & Jaoua, S. 1999. Production and characterization of metalloproteases synthesized concomitantly with d–endotoxin by Bacillus thuringiensis subsp. kurstaki strain grown on gruel–based media. Enzyme Microbiology Technology, 25: 364–371.