بررسی تنوع زیستی و کارایی مخمرهای اپی‌فیت انگور در کنترل زیستی بیماری کپک خاکستری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، بخش ﺗﺤﻘﯿﻘﺎت ﮔﯿﺎه‌ﭘﺰﺷﮑﯽ، ﻣﺮﮐﺰ ﺗﺤﻘﯿﻘﺎت و آموزش ﮐﺸﺎورزی آذربایجـان غربـی، ﺳﺎزﻣﺎن ﺗﺤﻘﯿﻘﺎت، آﻣﻮزش و ﺗﺮوﯾﺞ ﮐﺸﺎورزی، ارومیه ، اﯾﺮان.

2 دانشیار، مؤسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.

3 دانشیار، گروه کشاورزی، پژوهشکده گیاهان و مواد اولیه دارویی دانشگاه شهید بهشتی، اوین، تهران، ایران.

10.22092/bcpp.2024.365188.362

چکیده

بیماری کپک خاکستری خوشه انگور ناشی از قارچ Botrytis cinerea از عوامل مهم پوسیدگی وکاهش کمیت و کیفیت محصول در مراحل قبل و پس از برداشت انگور است که مصرف قارچ­کهای شیمیایی را اجتناب ناپذیر کرده است. با توجه به نگرانی‌‎های زیست محیطی مرتبط با مصرف بی رویه قارچ­کش­ های شیمیایی و مضرات آن برای سلامتی انسان و محیط زیست، بکارگیری فرآورده‌هایی از عوامل زیستی مورد توجه ویژه­ ای قرار گرفته ­است. در این بین، برخی مخمرها با دارا بودن فعالیت آنتاگونیستی علیه قارچ­ های بیمارگر، جایگزین مناسبی برای مصرف آفتکش‌های شیمیایی هستند. مطالعه حاضر با هدف شناسایی مخمرهای اپی­فیت انگور با فعالیت آنتاگونیستی علیه B. cinerea در مرحله پس از برداشت در شرایط آزمایشگاه صورت گرفته است. در مجموع 67 جدایه مخمر از سطح میوه ­های انگور برداشت شده از تاکستان­ های استان آذربایجان غربی جداسازی شد. براساس مطالعات ریخت‌شناسی و توالی­یابی ناحیه 26S rDNA D1/D2، جدایه­ ها به 21 گونه و 11 جنس متعلق بودند کهAureobasidium pullulans  به عنوان گونه غالب فلور انگور شناخته شد. توانایی آنتاگونیستی 67 جدایه مخمری علیه B. cinerea با استفاده از روش کشت متقابل بررسی شد. بطورکلی، 16 جدایه متعلق به هفت جنس، موفق به مهار رشد B. cinerea شدند. مطالعه کارایی 16 جدایه منتخب در مهار پوسیدگی خاکستری روی حبه‌های انگور در قالب طرح آماری کاملاً تصادفی با چهار تکرار نشان داد که بین جدایه­ها اختلاف معنی­داری وجود دارد. جدایه_های(G30)  Meyerozyma guilliermondii، G9 Metschnikowia pulcherrima  و ((G54 Rhodotorula glutinis  به ترتیب با 92/59، 91/37 و 90/15 درصد مهار پوسیدگی، موثرترین جدایه­ ها در کاهش بیماری روی حبه­ ها بودند. بررسی مکانیسم­ های دخیل در کنترل زیستی نشان داد که 12 جدایه قادر به تولید پروتئاز، شش جدایه قادر به تولید پکتیناز و 12 جدایه آمیلاز تولید کردند. همچنین مشخص شد نُه جدایه قادر به تشکیل بیوفیلم و هشت جدایه قادر به تولید سیدروفور بودند. بنابراین، فلور انگور دارای تنوع بالایی از مخمرها است و جدایه­ های برتر (G30، G54 و G9 ) به کمک مکانیسم ­های مختلف همچون آنتی بیوز، تولید پروتئاز، آمیلاز و سیدرفور، از کارایی بالایی در مهار پوسیدگی خاکستری انگور در شرایط آزمایشگاه برخوردار بودند.

کلیدواژه‌ها

موضوعات


Banani, H., Spadaro, D., Zhang, D., Matic, S., Garibaldi, A. & Gullino, M.L. 2014. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple. International Journal of Food Microbiology, 182– 183:1–8.
Baakza, A., Vala, A.K., Dave, B.P. & Dube, H.C. 2004. A comparative study of siderophore production by fungi from marine and terrestrial habitats. Journal of Experimental Marine Biology and Ecology, 311: 1–9.
Contarino, R., Brighina, S., Fallico, B., Cirvilleri, G., Parafati, L. & Restuccia, C. 2019. Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food Microbiology, 82: 70–74
Di Canito, A., Mateo–vargas, M.A., Mazzieri, M., Cantoral, J., Foschino, R. & Cordero–Bueso, G. 2021. The role of yeasts as biocontrol agents for pathogenic fungi on postharvest grapes: a review. Foods, 10: 1–15.
Di Francesco, A., Di Foggia, M., Corbetta, M., Baldo, D., Ratti, C. & Baraldi, E. 2021. Biocontrol activity and plant growth promotion exerted by Aureobasidium pullulans strains. Journal of Plant Growth Regulation, 40, 1233–1244.
Di Francesco, A., Martini, C., Mari, M. 2016. Biological control of postharvest diseases by microbial antagonists: How many mechanisms of action? European Journal of Plant Pathology, 145: 711–717.
Droby, S., Lschinski, S., Cohen, L., Daus, A., Chand–Goyal, T., Eckert, J.W. & Manulis, S. 1999. Characterization of an epiphytic yeast population of grapefruit capable of suppression of green mold decay caused by Penicillium digitatum. Biological Control, 16: 27–34.
Nadia, G., Sherien, M.M., Atalla, El–mougy, N.S. & Abdel–Kader, M.M. 2018. Production of pectinase by Saccharomyces cerevisiae and its application as biocontrol agent against navel orange and apple fruits decay. Bioscience Research, 2218–3973.
Etebarian, H.R., Sholberg, P.L., Eastwell, K.C. & Sayler, R.J. 2005.Biological control of apple blue mold with Pseudomonas fluorescens. Microbiology, 51: 591–598.
Elshafie, H.S., Caputo, L., De Martino, L., Grul’ová, D., Zheljazkov, V.Z., De Feo, V. & Camele, I. 2020. Biological investigations of essential oils extracted from three Juniperus species and evaluation of their antimicrobial, antioxidant and cytotoxic activities. Journal of Appl.ied Microbiology, 129: 1261–1271.
Esteves, M., Lage P., Sousa, J., Centeno, F., Teixeira, M.F., Tenreiro, R. & Mendes–Ferreira, A. .2023 Biocontrol of wine yeasts against four grape phytopathogenic fungi disclosed by time–course monitoring of inhibitory activates. Frontiers in Microbiology, 14: 1146065.
Fialho, M.B., Toffano, L., Pedroso, M.P., Augusto, F. & Pascholati S.F. 2010. Volatile organic compounds produced by Saccharomyces cerevisiae inhibit the in vitro development of Guignardia citricarpa, the causal agent of citrus black spot. World Journal of Microbiology and Biotechnoogy, 26: 925–932.
Gattlen, J., Zinn, M., Guimond, S., Körner, E., Amberg, C. & Mauclaire, L. 2011. Bioflm formation by the yeast Rhodotorula mucilaginosa: process, repeatability and cell attachment in a continuous bioflm reactor. Biofouling, 27: 979–991.
Giobbe, S., Marceddu, S., Scherm, B., Zara, G., Mazzarello, V.L, Budroni, M. & Migheli, Q. 2007. The strange case of a bioflm–forming strain of Pichia fermentans, which controls Monilinia brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Reserch, 7: 1389–1398.
Grzegorczyk, M., Szalewicz, A., Żarowska, B., Połomska, X., Wątorek, W., Wojtatowicz, M. & Drobnoustroje, w. 2015. biologicznej ochronie roślin przed chorobami grzybowymi. Acta Scientific Biotechnology, 14: 19–42.
Huang, R., Li, G.Q., Zhang, J., Yang, L., Che, H.J., Jiang, D.H. & Huang, H.C. 2011. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology, 101: 859–869.
Horváth, E., Dályai, L., Szabó, E., Barna, T., Kalmár, L., Posta, J., Sipiczki, M., Csoma, H. & Ida Miklós1. 2021. The antagonistic Metschnikowia andauensis produces extracellular enzymes and pulcherrimin, whose production can be promoted by the culture factors. Natire Profilo, 11: 10593.
Kowalska, J., Krzymińska, J. & Tyburski, J. 2022. Yeasts as a potential biological agent in plant disease protection and yield improvement – A short review. Agriculture, 12(9): 1404.
Kwasiborski, A., Bajji, M., Renaut, J., Delaplace, P. & Jijakli, M.H.  2014. Dentification of metabolic pathways expressed by Pichia anomala Kh6 in the presence of the pathogen Botrytis cinerea on apple: new possible targets for biocontrol improvement, PLoS ONE 9(3): e91434.
La Spada, F., Aloi, F., Coniglione, M., Pane, A. & Cacciola, S.O. 2021. Natural biostimulants elicit plant immune system in an integrated management strategy of the postharvest green mold of orange fruits incited by Penicillium digitatum. Front Plant Science, 12: 1149.
Libkind, D., Brizzio, S., Ruffini, A., Gadanho, M., van Broock, M. & Sampaio, P. 2003. Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie van Leeuwenhoek, 84: 313–322.
Liu, J., Sui, Y., Wisniewski, M., Droby, S., Liu, Y. 2013. A review, Utilization of antagonistic yeasts to manage postharvest fungal disease control. International Journal of Food Microbiology, 167: 153–160.
Mokhtarnejad, l. 2015. Investigating of biodiversity and phylogeny of yeasts in the soils of Lake Urmia and the biological control of grape cluster diseases using species of the genus Pichia. pp. 187
Moraes Bazioli, J.M., Belinato, J.R., Costa, J.H., Akiyama, D.Y., de Pontes, J.G.M., Kupper, K.C., Augusto, F., de Carvalho, J.E. & Fill, T.P. 2019. Biological control of citrus postharvest phytopathogens. Toxins, 11: 460.
Nally, M.C. Pesce, V.M. Maturano, Y.P. Muñoz, C.J. Combina, M. Toro, M.E. de Figueroa, L.C. & Vazquez, F. 2012. Biocontrol of Botrytis cinerea in table grapes by non–pathogenic indigenous Saccharomyces cerevisiae yeasts isolated from viticultural environments in Argentina. Postharvest Biology and Technology, 64: 40–48.
Nally, M., Pesce, V., Maturano, Y., Assaf, L.R., Toro, M., de Figueroa, L.C. & Vazquez, F. 2015. Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots. International Journal of Food Microbiology, 204: 91–100.
Palmieri, D., Ianiri, G., Del Grosso, C., Barone, G., De Curtis, F. & Castoria, R. 2022 Advances and perspectives in the use of biocontrol agents against fungal plant diseases. Horticulturae, 8: 577.
Parafati, L., Vitale, A., Restuccia, C. & Cirvilleri, G. 2015. Biocontrol ability and action mechanism of food–isolated yeast strains against Botrytis cinerea causing post–harvest bunch rot of table grape. Food Microbiology, 47: 85–92.
Parafati, L., Vitale, A., Restuccia, C. & Cirvilleri, G. 2015. Biocontrol ability and action mechanism of food–isolated yeast strains against Botrytis cinerea causing post–harvest bunch rot of table grape. Food Microbiology, 47: 85–92.
Pereyra, M.M., Díaz, M.A., Soliz–Santander, F.F., Poehlein, A., Meinhardt, F. & Daniel, R. 2021. Screening methods for isolation of biocontrol Epiphytic yeasts against Penicillium digitatum in lemons. Journal of Fungi, 7: 166.
Pertot, I., Giovannini, O., Benanchi, M., Caffi, T., Rossi, V. & Mugnai, L. 2017. Combining biocontrol agents with different mechanisms of action in a strategy to control Botrytis cinerea on grapevine. Crop Protection, 97: 85–93.
Pretscher, J., Fischkal, T., Branscheidt, S., Jäger, L., Kahl, S. & Schlander, M. 2018. Yeasts from different habitats and their potential as biocontrol agents. Fermentation, 4–31.
Pretorius, I.S., Van Der Westhuizen, T.J. & Augustyn, O.P.H. 1999. Yeast biodiversity in vineyards and wineries and it’s importance to the South–African wine industry. A review. South African Journal of Enology and Viticulture, 20: 61–69.
Punja, Z.K. & Utkhede, R.S. 2003. Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnology, 21: 400–407.
Pusey, P.L., Stockwell, V.O. & Mazzola, M. 2009. Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology, 99: 571–581.
Podgórska–Kryszczuk, I., Solarska E. & Kordowska–Wiater, M. 2022. Biological Control of Fusarium culmorum, Fusarium graminearum and Fusarium poae by Antagonistic Yeasts. Pathogens, 11: 86: 1–16.
Rabosto, X., Carrau, M., Paz, A., Boido, E., Dellacassa, E. & Carrau, F.M. 2006. Grapes and Vineyard Soils as Sources of Microorganisms for Biological Control of Botrytis cinerea. American Journal of Enology and Viticulture, 57: 332–338.
Reyes–bravo, P., Acuña–fontecilla, A., Rosales, I.M.I. M. & Godoy, L. 2019. Evaluation of native wine yeast as biocontrol agents against fungal pathogens related to postharvest diseases. Journal of Agronomy & Agricultural Science.
Ruzicka, F., Hola, V., Votava, M. & Tekkalov_a, R. 2007. Importance of biofilm in Candida parapsilosis and evaluation of its susceptibility to antifungal agents by colorimetric method. Folia Microbiol, 52: 209–214.
Schwyn, B. & Neilands, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Annual Biochemistry, 60: 47–56.
Sànchez–Torres, P. & Tuset, J.J. 2011. Molecular insights into fungicide resistance in sensitive and resistant Penicillium digitatum strains infecting citrus. Postharvest Biology and Technology, 59: 159–165.
Sansone, G., Rezza, I., Calvente, V., Benuzzi, D. & de Tosetti, M.I.S. 2005. Control of Botrytis cinerea strains resistant to iprodione in apple with rhodotorulic acid and yeasts. Postharvest Biology and Technology, 35: 245–251.
Saravanakumar, D., Ciavorella, A., Spadaro, D., Garibaldi, A. & Gullino, M.L. 2008. Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biology and Technology, 49: 121–128.
Savary, S., Ficke, A., Aubertot, J.N. & Hollier, C. 2012. Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4(4): 519–537.
Sanzani, S.M., De Girolamo, A., Schena, L., Solfrizzo, M., Ippolito, A. & Visconti, A. 2009. Control of Penicillium expansum and patulin accumulation on apples by quercetin and umbelliferone. European Food Research Technology, 228: 381–389.
Sharma, R.R. Singh, D. & Singh, R. 2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists. Biological Control, 50: 205–221.
Sipiczki, M. 2006. Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Applied and Environmental Microbiology, 72: 6716–6724.
Spadaro, D. & Droby, S. 2016. Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Science and Technology, 47: 39–49.
Strauss, M.L.A., Jolly, N.P., Lambrechts, M.G. & Van Rensburg, P. 2001. Screening for the production of extracellular hydrolytic enzymes by non–saccharomyces wine yeasts. Journal of Applied Microbiology, 91: 182–190.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. & MEG, A. 2011.  Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molcular Biology and Evolution, 28: 2731–2739.
Tian, Y.Q., Li, W., Jiang, Z.T., Jing, M.M. & Shao, Y.Z. 2018. The preservation effect of Metschnikowia pulcherrima yeast on anthracnose of postharvest mango fruits and the possible mechanism. Food Science and Biotechnology, 27: 95–105.
Usall, J., Ippolito, A., Sisquella, M. & Neri, F. 2016. Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology, 122: 30–40.
Vargas, M., Garrido, F., Zapata, N. & Tapia, M. 2012. Isolation and Selection of Epiphytic Yeat for Biocontrol of Botrytis cinerea Pers. on Table Grapes. Chil. Journal of Agriculture Research, 72: 332–337.
Vero, S., Mondino, P., Burgueño, J., Soubes, M. & Wisniewski, M. 2002. Characterization of biocontrol activity of two yeast strains from Uruguay against blue mold of apple. Postharvest Biology and Technology, 26: 91–98.
Wallace, R.L., Hirkala, D.L. & Nelson, L.M. 2018. Mechanisms of action of three isolates of Pseudomonas fluorescens active against postharvest grey mold decay of apple during commercial storage. Biological Control, 117: 13–20.
Wang, W., Chi, Z., Li, J. & Wang, X. 2009. Siderophore production by the marine–derived Aureobasidium pullulans and its antimicrobial activity. Bioresource Technology, 100: 2639–2641.
Wilson, C.L. & Wisniewski, M. 1989. Biological control of post harvest diseases offruit and vegetables: an emerging technology. Annual Review of Phytopathology, 27: 425–441.
Yang, H., Wang, L., Li, S., Gao, X., Wu, N., Zhao, Y. & Sun, W. 2021. Control of postharvest grey spot rot of loquat fruit with Metschnikowia pulcherrima E1 and potential mechanisms of action. Biological Control, 152: 104406
Zajc, J., Černoša, A., Di Francesco, A., Castoria, R., De Curtis, F., Lima, G., Badri, H., Jijakli, H., Ippolito, A., Čar, C.G., Zalar, P., Cimerman N.G. & Janisiewicz W.J. 2020. Characterization of Aureobasidium pul[1]lulans isolates selected as biocontrol agents against fruit decay pathogens. Fungal Genetics and Biology, 10:1–13.
Zhang, H., Godana, E. A., Sui, Y., Yang, Q., Zhang, X. & Zhao, L. 2020. Biological control as an alternative to synthetic fungicides for the management of grey and blue mould diseases of table grapes: a review. Critical Review in Microbiology, 46: 450–462.
Zhang, D., Spadaro, D., Valente, S., Garibaldi, A. & Gullino, M.L. 2012. Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens. International Journal of Food Microbiology, 153: 453–464.
Zhou, Y., Li, W., Zeng, J. & Shao, Y. 2018. Mechanisms of action of the yeast Debaryomyces nepalensis for control of the pathogen Colletotrichum gloeosporioides in mango fruit. Biological Control, 123: 111–119.