Abbod, M., Alkhouri, I. & Shahoud, R. 2025. Investigating the effects of Trichoderma harzianum and plant compost on maize growth and Fusarium root rot management under greenhouse conditions. DYSONA–Applied Science, 6: 30–39.
Abdenaceur, R., Farida, B. & Fatma, S. 2024. Volatile organic compounds activities of
Trichoderma species isolated from olive grove soil against the wilt pathogen,
Verticillium dahliae. European Journal of Plant Pathology,
https://doi.org/10.1007/s10658–024–02839–8
Adekunle, A.T., Cardwell, K.F., Florini, D.A. & Ikotun, T. 2001. Seed treatment with Trichoderma species for control of damping–off of cowpea caused by Macrophomina phaseolina. Biocontrol Science and Technology, 11: 449–457.
Ausaf, N., Saleem, H., Nawab, R., Kamal, A., Ahmad, H.A., Ghufran, J., Riaz, M.S., Ullah, I., Chaudhary, H.J. & Munis, M.F.H. 2025. Comparative efficacy of Trichoderma harzianum and Pseudomonas putida in mitigating Verticillium wilt of Brassica napus. Journal of Phytopathology, 173: e70045
Benhamou, N. & Blanger, R.R. 1998. Benzothiadiazole–Mediated induced resistance to Fusarium oxysporum f. sp. radicis–lycopersici in tomato. Plant Physiology, 118: 1203–1212.
Bilginturan, M. & Hatat Karaca, G. 2021. Effects of Trichoderma and PGPR applications on growth and Verticillium wilt of eggplant. Mediterranean Agricultural Sciences, 34(3): 267–272.
Bora, J., Das, B.C., Borkakoty, K. & Dutta, P.K. 2010. Studies on the growth and multiplication of Trichoderma harzianum and Trichoderma viride on different compost manures and their population dynamics in vitro and in vivo conditions. Journal of Biological Control, 24: 253–256.
Carrasco, F., Miranda, V., Sede, S.M., Bustos, S., Gonzalez, V., Otero, L. & Fracchia, S. 2023. Screening for native
Trichoderma strains as potential biocontrollers of the olive pathogen
Verticillium dahliae. Arid Land Research and Management,
https://doi.org/10.1080/15324982.2023.2233933
Carrasco, F., Miranda, V., Sede, S.M., Bustos, S., González, V., Otero, L. & Fracchia, S. 2024. Screening for native Trichoderma strains as potential biocontrollers of the olive pathogen Verticillium dahliae. Arid Land Research and Management, 38(1): 122–143.
Carrero–Carrón, I., Rubio, M.B. & Niño–Sánchez, J. 2018. Interactions between Trichoderma harzianum and defoliating Verticillium dahliae in resistant and susceptible wild olive clones. Plant Pathology, 67(8): 1758–1767.
Carrero–Carrón, I., Trapero–Casas, J.L., Olivares–García, C., Monte, E., Hermosa, R. & Jiménez–Díaz, R.M. 2016. Trichoderma asperellum is effective for biocontrol of Verticillium wilt in olive caused by the defoliating pathotype of Verticillium dahliae. Crop Protection, 88: 45–52.
Carroll, C.L., Carter, C.A., Goodhue, R.E., Lawell, C.L. & Subbarao, K.V. 2018. A review of control options and externalities for Verticillium wilts. Phytopathology, 108: 160–171.
Contreras–Soto, M.B., Tovar–Pedraza, J.M., Solano–Báez, A.R., Bayardo–Rosales, H. & Márquez–Licona, G. 2025. Biocontrol Strategies Against Plant–Parasitic Nematodes Using Trichoderma spp.: Mechanisms, Applications, and Management Perspectives. Journal of Fungi, 11(7): 517.
Deketelaere, S., Tyvaert, L., França, S.C. & Höfte, M. 2017. Desirable traits of a good biocontrol agent against Verticillium wilt. Frontiers in Microbiology, 8: 1186.
Druzhinina, I.S., Kopchinskiy, A.G., Komon, M., Bissett, J., Szakacs, G. & Kubicek, C.P. 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genetics and Biology: FG & B 42(10): 813–28.
Dubey S.C., Tripathi, A. & Singh, B. 2013. Integrated management of Fusarium wilt by combined soil application and seed dressing formulations of Trichoderma species to increase grain yield of chickpea. International Journal of Pest Management, 59(1): 47–54.
Fotoohiyan, Z., Rezaee, S., Bonjar, G.H., Mohammadi, A.H. & Moradi, M. 2017. Biocontrol potential of Trichoderma harzianum in controlling wilt disease of pistachio caused by Verticillium dahliae. Journal of Plant Protection Research, 57: 185–193.
Hafiz, F.B., Moradtalab, N., Goertz, S., Rietz, S., Dietel, K., Rozhon Rozhon, W., Humbeck, K., Geistlinger, J., Neumann, G. & Schellenberg, I. 2022. Synergistic effects of a root–endophytic Trichoderma fungus and Bacillus on early root colonization and defence activation against Verticillium longisporum in rapeseed. Molecular Plant–Microbe Interaction, 35(5): 380–392.
Harman, G.E. & Kubicek, C.P. 1998. Trichoderma and Gliocladium. Enzymes, Biological Control and Commercial Applications, vol. II. Taylor & Francis, London, United Kingdom.
Harman, G.E., Howell, C.R., Viterbo, A., Chet, I. & Lorito, M. 2004. Trichoderma species–opportunistic, avirulent plant symbionts. Nature Review Microbiology, 2: 43–56.
Iula, G., Miras–Moreno, B., Lucini, L. & Trevisan, M. 2021. The mycorrhiza–and Trichoderma–mediated elicitation of secondary metabolism and modulation of phytohormone profile in tomato plants. Horticulturae, 7: 394.
Jabnoun–Khiareddine, H., Daami–Remadi, M., Ayed, F. & El Mahjoub, M. 2009. Biological control of tomato Verticillium wilt by using indigenous Trichoderma spp. African Journal of Plant Science and Biotechnology, 3: 26–36.
Jamdar, Z., Mohammadi, A.H. & Mohammadi, S. 2013. Study of antagonistic effects of Trichoderma species on growth of Verticillium dahliae, the causal agent of Verticillium wilt of pistachio under laboratory condition. Journal of Nuts, 4(4): 53–56.
Jaroszuk–Ściseł, J., Tyśkiewicz, R., Nowak, A., Ozimek, E., Majewska, M., Hanaka, A., Tyśkiewicz, K., Pawlik, A. & Janusz, G. 2019. Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. International Journal of Molecular Sciences, 20: 4923.
Jimenez–Diaz, R.M., Trapero–Casas, J.L., Boned, J., Landa, B.B. & Navas–Cortes, J.A. 2009. Uso de Bioten para la proteccion biologica de plantones de olivo contra la Verticilosis causada por el patotipo defoliante de Verticillium dahliae. Boletın Sanidad Vegetal de Plagas, 35: 595–615.
Karadzhova, N. 2024. In vitro study of Trichoderma isolates–potential antagonists of Sclerotinia sclerotiorum and other soil pathogens causing root and stem rots on pepper (Capsicum annuum L.). Agricultural Sciences/Agrarni Nauki, 16(40).
Khan, J., Ooka, J.J., Miller, S.A., Madden, L.V. & Hoitink, H.A.J. 2004. Systemic resistance induced by Trichoderma hamatum 382 in cucumber against phytophthora Crown rot and leaf blight. Plant Disease, 88: 280–286.
Kong W.L., Ni H., Wang, W.Y. & Wu, X.Q. 2022. Antifungal effects of volatile organic compounds produced by Trichoderma koningiopsis T2 against Verticillium dahliae. Frontiers in Microbiology, 13: 1013468
Kowalska, B. 2021. Management of the soil–borne fungal pathogen–Verticillium dahliae Kleb. causing vascular wilt diseases. Journal of Plant Pathology, 103: 1185–1194.
Kubicek, C.P., Bissett, J., Druzhinina, I., Kullnig–Gradinger, C.M. & Szakacs, G. 2003. Genetic and metabolic diversity of Trichoderma: a case study on South East Asian isolates. Fungal Genetics and Biology, 38: 310–319.
Martinez, Y., Ribera, J., Schwarze, F.W.M.R. & De France, K. 2023. Biotechnological development of Trichoderma–based formulations for biological control. Applied Microbiology and Biotechnology, 107: 5595–5612.
McGrath, T. 2001. Phytophthora Blight of Cucurbits. Department of Plant Pathology, Long Island Horticultural Research and Extension Center. https://doi.org/10.1094/PHI-I-2005-0429-01
Meddad–Hamza, A., Benzina, F., Meddad, C., Hamza, N., Reghmit, A., Ziane, H. & Ksentini, H. 2023. Biological control of arbuscular mycorrhizal fungi and Trichoderma harzianum against Fusarium oxysporum and Verticillium dahliae induced wilt in tomato plants. Egyptian Journal of Biological Pest Control, 33: 91.
Mirmajlessi, S.M., Mänd, M., Najdabbasi, N., Larena, I. & Loit, E. 2016. Screening of native Trichoderma harzianum isolates for their ability to control Verticillium wilt of strawberry. Zemdirbyste, 103: 397–404.
Mokhtari, W.M., Achouri, M., Remah, A. & Boubaker, H. 2018. Verticillium dahliae–eggplant as the pathosystem model to reveal biocontrol potential of three Trichoderma spp. in greenhouse conditions. Atlas Journal of Biology, 417–421.
Mulero–Aparicio, A., Varo, A., Agustí–Brisach, C., Lopez–Escudero, F.J. & Trapero, A. 2020. Biological control of Verticillium wilt of olive in the field. Crop Protection, 128: 104993.
Mwangi, M.W., Monda, E.O., Okoth, S.A. & Jefwa, J.M. 2011. Inoculation of tomato seedlings with Trichoderma harzianum and arbuscular mycorrhizal fungi and their effect on growth and control of wilt in tomato seedlings. Brazilian Journal of Microbiology, 42: 508–513.
Naeimi, S., Khosravi, V., Varga, A., Vágvölgyi, C. & Kredics, L. 2020. Screening of organic substrates for solid–state fermentation, viability and bioefficacy of Trichoderma harzianum AS12–2, a biocontrol strain against rice sheath blight disease. Agronomy, 10(9): 1258.
Naraghi, L., Heydari, A., Rezaee, S., Razavi, M. & Afshari–Azad, H. 2010. Biological control of Verticillium wilt of greenhouse cucumber by Talaromyces flavus. Phytopathologia Mediterranea, 49: 321–329.
Nzanza, B. 2012. Seedling quality, plant growth and fruit yield and quality of tomato (Solanum lycopersicum L.) in response to Trichoderma harzianum and arbuscular mycorrhizal fungi. University of Pretoria.
Özgönen, H., Candan, M. & Arici, S.E. 2010. The Effects of Mycorrhizal Fungi and Trichoderma harzianum on Verticillium dahliae in Cucumber. 2nd International Symposium on Sustainable Development, Sarajevo, Bosnia and Herzegovina, 451-455.
Papavizas, G.C.1985. Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annual Review of Phytopathology, 23: 23–54.
Prasetyawan, S. & Sulistyowati, L. 2018, January. Glucanase and Chitinase from some isolates of endophytic fungus Trichoderma spp. In IOP Conference Series: Materials Science and Engineering (Vol. 299, p. 012026). IOP Publishing.
Rahman, A.U. 2023. The Role of Soil− Borne Fungi in Potato Early Dying Disease: A Study of Verticillium dahliae, V. albo–atrum, and Colletotrichum coccodes in Alberta (Master's thesis, University of Lethbridge (Canada)), 173 pages.
Reghmit, A., Benzina–tihar, F., López Escudero, F. J., Halouane Sahir, F., Oukali, Z., Bensmail, S., & Ghozali, N. 2021. Trichoderma spp. isolates from the rhizosphere of healthy olive trees in northern Algeria and their biocontrol potentials against the olive wilt pathogen, Verticillium Dahliae. Organic Agriculture, 11: 639–657.
Rodrigues, A.O., May De Mio, L.L. & Soccol, C.R. 2023. Trichoderma as a powerful fungal disease control agent for a more sustainable and healthy agriculture: recent studies and molecular insights. Planta, 257: 3.
Ruano–Rosa D., Prieto P. & Rincon A.M. 2016. Fate of Trichoderma harzianum in the olive rhizosphere: time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae. BioControl, 61: 269–82.
Saberi, M., Sarpeleh, A., Askary, H. & Rafiei, F. 2013. Effects of wood vinegar and vermicompost combination in the control of Verticillium dahliae the causal agent of verticillium wilt of greenhouse cucumber. Applied Entomology and Phytopathology, 81: 51–60.
Shanmugam, V. & Kanoujia, N. 2011. Biological management of vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycospersici by plant growth–promoting rhizobacterial mixture. Biological Control, 57: 58–93.
Spadaro, D. & Gullino, M.L. 2005. Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Protection, 24: 601–613.
Sun, W., Shahrajabian, M.H. & Guan, L. 2025. The Biocontrol and Growth–Promoting Potential of Penicillium spp. and Trichoderma spp. in Sustainable Agriculture. Plants, 14: 2007.
Susanna, S., Sayuthi, M. & Salsabila, L. 2024. Test antagonism of several Trichoderma species in suppressing the growth of Alternaria sp. in vitro. In IOP Conference Series: Earth and Environmental Science (Vol. 1297, No. 1, p. 012066). IOP Publishing.
Thangavelu, R., Palaniswami, A. & Velazhahan, R. 2004. Mass production of Trichoderma harzianum for managing Fusarium wilt of banana. Agriculture, Ecosystems & Environment, 103: 259–263.
Tomah, A.A., Alamer, I.S.A., Khattak, A.A., Ahmed, T., Hatamleh, A.A., Al–Dosary, M.A., Ali, H.M., Wang, D., Zhang, J., Xu, L. & Li, B. 2023. Potential of Trichoderma virens HZA14 in controlling Verticillium Wilt disease of eggplant and analysis of its genes responsible for microsclerotial degradation. Plants, 12(21): 3761.
Verma, M., Brar, S.K., Tyagi, R.D., Surampalli, R.Y. & Valero, J.R. 2007. Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37: 1–20.
Vermelho, A.B., Moreira, J.V., Akamine, I.T., Cardoso, V.S. & Mansoldo, F.R.P. 2024. Agricultural pest management: The role of microorganisms in biopesticides and soil bioremediation. Plants, 13: 2762.
Wang, N., Xu, Q., Qin, C., Geng, L., Yan, Z., Li, H., Ahammed, G.J. & Chen, S. 2025. Synergistic Effects of Trichoderma harzianum and light quality on photosynthetic carbon metabolism and growth in tomato plants. Agronomy, 15: 1362.
Wang, R.H., Zhou, B.L., Zhang, Q.F., Lian, H. & Fu, Y.W. 2006. Effects of vanillin and cinnamic acid in root exudates of eggplants on Verticillium dahliae. Acta Ecologica Sinica, 26: 3152–3155.
Woo, S.L., Hermosa, R., Lorito, M. & Monte, E. 2022. Trichoderma: a multipurpose, plant–beneficial microorganism for eco–sustainable agriculture. Nature Reviews Microbiology, https://doi.org/10.1038/s41579–022–00819–5
Xiaojun, C., Wongkaew, S., Jie, Y., Xuehui, Y., Haiyong, H., Shiping, W., Qigqun, T., Lishuang, W., Athinuwat, D. & Buensanteai, N. 2014. In vitro inhibition of pathogenic Verticillium dahliae, causal agent of potato wilt disease in China by Trichoderma isolates. African Journal of Biotechnology, 13: 3402–3412.
Zhu, Y., Zhao, M., Li, T., Wang, L., Liao, C., Liu, D., Zhang, H., Zhao, Y., Liu, L., Ge, X. & Li, B. 2023. Interactions between Verticillium dahliae and cotton: pathogenic mechanism and cotton resistance mechanism to Verticillium wilt. Frontiers in Plant Science, 14:1174281.