امکان‌سنجی کاربرد چند استروئید گیاهی به‌عنوان حشره‌کش‌های زیستی از طریق بررسی مدل‌های برهمکنش آن‌ها با گیرنده‌های کداستروئیدی کرم غوزه‌ی Helicoverpa armigera و بالتوری سبز Chrysoperla carnea

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تحصصی، دانشگاه کشاورزی دانشگاه ارومیه

2 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه ارومیه

3 دانشکده کشاورزی، دانشگاه ارومیه

چکیده

کرم غوزه‌ی پنبه Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) یکی از آفات مهم و کلیدی پنبه در جهان و در ایران است. این گونه دارای دامنه‌ی وسیع میزبانی می‌باشد و هر ساله خسارت غیر قابل جبرانی را به کشاورزان تحمیل می‌کند. در زمینه‌ی مبارزه با آفات گیاهی از روش­های مختلفی استفاده می‌شود. در طی سالیان اخیر محققین در جستجوی یافتن تکنولوژی تولید حشره کش­های بی‌خطری هستند که دارای خصوصیاتی از قبیل نحوه‌ی اثر انتخابی بیشتر روی حشرات هدف و خطرات زیست محیطی کمتر روی موجودات غیرهدف باشند. در این میان حشره­کش­های مختل کننده پوست اندازی بسیار مورد اقبال واقع شدند. در این مقاله سعی شده تا به استفاده از غربال­گری مجازی توسط داکینگ مولکولی مدل‌های برهمکنش گیرنده‌های اکدیزونی و تعدادی استروئید گیاهی که در سال‌های 2013 تا 2015 در بانک ترکیبات استروئیدی به‌ثبت رسیده است، به‌کارگیری این ترکیبات در مبارزه با کرم غوزه‌ی Helicoverpa armigera با کمترین اثر سو بر روی بالتوری سبزChrysoperla carnea  به‌عنوان دشمن طبیعی آن امکان­سنجی­گردد. مدل گیرنده­های اکدیزون آفت و بالتوری سبز طراحی و برآورد کارایی شد. شاخص Z-score، کیفیت مدل گیرنده EcR ساخته شده برای کرم غوزه و بالتوری سبز را به‌‌ترتیب معادل روش­های NMR وX-ray Crystallography دانست. نتایج نشان داد که در بین استروئیدهای گیاهی مورد بررسی، استروئیدهای 11β-HYDROXY-20-DEOXYSHIDASTERONE، 2,3,14,20,26-PENTAHYDROXY-6-OXO-STIGMAST-7-ENE-22,26-LACTOL، CALLECDYSTEROL A,B,C و GLUTINOSTERONE کمترین ثابت بازداری (Ki)، منفی­ترین انرژی پیوند و کمترین میزان تغییرات RMSD در هنگام اتصال به‌گیرنده هدف اکدیزون آفت را نشان داده‌اند و همچنین در اتصال به گیرنده‌‌های اکدیزونی بالتوری سبز بسیار کم اثر ظاهر شدند. لذا استروئیدها گیاهی ذکر شده از پتانسیل بالایی برای کنترل کرم غوزه برخوردار هستند و تأثیر بسیار کمی در برهم زدن سیکل زندگی بالتوری سبز خواهند داشت.

 

کلیدواژه‌ها


Acton, Q.A. 2011. Pesticides: Advances in Research and Application: 2011 Edition. ScholarlyEditions. pp. 297.
Ahmad, M. 2007. Insecticide resistance mechanisms and their management in Helicoverpa armigera (Hubner): a review. Journal of Agricultural Research, 45 (4): 319-335.
Albuquerque, G.S., Tauber, C.A. & Tauber, M.J. 1994. Chrysoperla externa (Neuroptera: Chrysopidae): Life History and Potential for Biological Control in Central and South America. Biological Control, 4(1): 8-13.
Allert, M., Rizk, S.S., Looger, L.L. & Hellinga, H.W. 2004. Computational design of receptors for an organophosphate surrogate of the nerve agent soman. Proceeding of the National Academy of Sciences of the United States of America, USA. 101: 7907–7912.
Benkert, P., Biasini, M. & Schwede, T. 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics Advance Access, 27 (3): 343-350.
Billas, I.M., Iwema, T., Garnier, J.M., Mitschler, A., Rochel, N. & Moras, D. 2003. Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature, 426(6962): 91-96.
Billas, I.M. & Moras, D. 2005. Ligand-binding pocket of the ecdysone receptor. Vitamins and hormones, 73: 101-29.
Billas, I.M.L., Browning, C., Lawrence, M.C., Graham, L.D., Moras, D. & Hill, R. 2009. The structure and function of ecdysone receptor. Ecdysone: structures and functions. (ed. Smagghe, G.), pp. 335–360. Springer, Berlin.
Carmichael, J.A., Lawrence, M.C., Graham, L.D., Pilling, P.A., Epa, V.C., Noyce, L., Lovrecz, G., Winkler, D.A., Pawlak-Skrzecz, A., Eaton, R.E., Hannan, G.N. & Hill, R.J. 2005. The X-ray structure of a hemipteran ecdysone receptor ligand-binding domain: comparison with a lepidopteran ecdysone receptor ligand-binding domain and implications for insecticide design. The Journal of biological chemistry, 280(23): 22258-22269.
Dhadialla, T.S., Carlson, G.R. & Le, D.P. 1998. New insecticides with ecdysteroidal and juvenile hormone activity. Annual review of entomology, 43: 545-69.
Dhadialla, T.S., Retnakaran, A. & Smagghe, G. 2005. Insect growth and development-disrupting insecticides. Comprehensive Molecular Insect Science. (ed. Gilbert, L.I., Iatrou, K. and Gill, S.S.), pp. 55-115. Elsevier Press, Oxford.
Dinan, L. 2001. Phytoecdysteroids: biological aspects. Phytochemistry, 57(3): 325-339.
Dinan, L., Savchenko, T. & Whiting, P. 2001. On the distribution of phytoecdysteroids in plants. Cellular and Molecular Life Sciences, 58 (8): 1121-1132.
Eisenberg, D., Lüthy, R., & Bowie, J.U. 1997. VERIFY3D: assessment of protein models with three dimensional profiles". Methods Enzymology, 277: 396-404.
Fahrbach, S.E., Smagghe, G. & Velarde, R.A. 2012. Insect nuclear receptors. Annual review of entomology, 57: 83-106.
Farid, A. 1986. Study of bollworm Helicoverpa armigera (Hübner) on tomato in Jiroft and Kahnuj. Applied Entomology and Phytopathology, 54: 12-24.
Fathipour, Y. & Naseri, B. 2011. Soybean Cultivars Affecting Performance of Helicoverpa armigera (Lepidoptera: Noctuidae), Soybean - Biochemistry, Chemistry and Physiology, 642", (Ed.): Ng, T. B.. In Tech, Rijeka, Croatia, 599-630.
Ghadari, R. 2012. Practical Computational Chemistry Docking & MD Simulation. Parivar. Tabriz. pp. 126. (In Persian).
Ghosh, D. & Laddha, K.S. 2006. Extraction and monitoring of phytoecdysteroids through HPLC. J Chromatogr Sci, 44 (1): 22-26.
Giolo, F., Medina, P., Grützmacher, A. & Viñuela, E. 2009. Effects of pesticides commonly used in peach orchards in Brazil on predatory lacewing Chrysoperla carnea under laboratory conditions. BioControl, 54(5): 625-635.
Godoy, M.S., Carvalho, G.A., Moraes, J.C., Cosme, L.V., Goussain, M.M., Carvalho, C.F. & Morais, A.A. 2004. Selectivity of six insectides used in citrus crops on pupae and adults of Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Biol Control, 33: 359-364.
Graham, L.D., Johnson, W.M., Pawlak-Skrzecz, A., Eaton, R.E., Bliese, M., Howell, L., Hannan, G.N. & Hill, R.J. 2007. Ligand binding by recombinant domains from insect ecdysone receptors. Insect biochemistry and molecular biology, 37(6): 611-26.
Guex, N., & Peitsch, M.C. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 18: 2714-2723.
Kuhr, R.J. & Motoyama, N. 1998. Pesticides and the Future: Minimizing Chronic Exposure of Humans and the Environment. IOS Press. Amsterdam. pp. 332.
Liu, Z., Li, D., Gong, P. & Wu, K. 2004. Life table studies of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), on different host plants. Environmental entomology, 33: 1570-1576.
Medina, P., Budia, F., Tirry, L., Smagghe, G. & Viñuela, E. 2001. Compatibility of Spinosad, Tebufenozide and Azadirachtin with Eggs and Pupae of the Predator Chrysoperla carnea (Stephens) Under Laboratory Conditions. Biocontrol Science and Technology, 11(5): 597-610.
Medina, P., Smagghe, G., Budia, F., Del Estal, P., Tirry, L. & Vinuela, E. 2002. Significance of penetration, excretion, and transovarial uptake to toxicity of three insect growth regulators in predatory lacewing adults. Archives of insect biochemistry and physiology, 51(2): 91-101.
Medina, P., Smagghe, G., Budia, F., Tirry, L. & Viñuela, E. 2003. Toxicity and Absorption of Azadirachtin, Diflubenzuron, Pyriproxyfen, and Tebufenozide after Topical Application in Predatory Larvae of Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental entomology, 32(1): 196-203.
Mojeni, T.D., Bayat Asadi, H. & Noori, G. 2000. Identification of bollworm species and determination the percentage of abundance on important hosts of Golestan province. Proceedings of the 14th Iranian Plant Protection Congress, Isfahan University of Technology. 5–8 Sept. (In Persian with English summary).
Mojeni, T.D., Bayat Asadi, H., Noori, G. & Shojaei, M. 2005. Study on bioregional aspects of bollworm Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae), in the cotton fields of Golestan province Agriculture Science, 11 (2): 97-115. (In Persian with English summary).
Moral Garcia, F.J. 2006. Analysis of the spatio-temporal distribution of Helicoverpa armigera (Hübner) in a tomato fields using a stochastic approach. Biosystems Engineering, 93: 253-259.
Mommaerts, V., Sterk, G. & Smagghe, G. 2006. Bumblebees can be used in combination with juvenile hormone analogues and ecdysone agonists. Ecotoxicology (London, England), 15(6): 513-521.
Moras, D. & Gronemeyer, H. 1998. The nuclear receptor ligand-binding domain: structure and function. Current opinion in cell biology, 10(3): 384-391.
Nakagawa, Y. 2005. Nonsteroidal ecdysone agonists. Vitamins and hormones, 73: 131-173.
Nakagawa, Y. & Henrich, V.C. 2009. Arthropod nuclear receptors and their role in molting. The FEBS journal, 276(21): 6128-6157.
Naseri, B., Fathipour, Y., Moharramipour, S. & Hosseininaveh, V. 2009. Life table parameters of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on different soybean cultivars. J. Entomol. Soc. Iran, 29: 25-40. (In Persian with English summary).
Pimentel, D. 2002. Encyclopedia of Pest Management. Marcel Dekker, INC. New York. Basel, pp. 933.
Ramachandran, G.N., Ramachandran, C. & Sasisekharan, V. 1963. Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7: 95-99.
Reddy, K.S., Rao, G.R., Rao, P.A. & Rajasekhar, P. 2004. Life table studies of the capitulum borer, Helicoverpa armigera (Hübner) infesting sunflower. Journal of Entomological Research, 28: 13-18.
Retnakaran, A., Krell, P., Feng, Q. & Arif, B. 2003. Ecdysone agonists: mechanism and importance in controlling insect pests of agriculture and forestry. Archives of insect biochemistry and physiology, 54(4): 187-199.
Schmelz, E.A., Grebenok, R.J., Ohnmeiss, T.E. & Bowers, W.S. 2002. Interactions between Spinacia oleracea and Bradysia impatiens: a role for phytoecdysteroids. Archives of insect biochemistry and physiology, 51 (4): 204-221.
Senior, L.J. & McEwen, P.K. 2001. The use of lacewings in biological control. Lacewings in the crop environment. (ed. McEwan, P.K., New, T.R. & Whittington, A.E.), pp. 296-302. Cambridge University Press, Cambridge.
Vogt, H. 1994. Effects of pesticides on Chrysoperla carnea Steph. (Neuroptera: Chrysopidae) in the field and comparison with laboratory and semi-field results. IOBC/WPRS Bull 17: 71-82.
Wing, K.D., Slawecki, R.A. & Carlson, G.R. 1988. RH 5849, a Nonsteroidal Ecdysone Agonist: Effects on Larval Lepidoptera. Science (New York, N.Y.), 241(4864): 470-472.
Wiederstein, M., & Sippl, M.J. 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35: W407-W410.
Yao, T.P., Forman, B.M., Jiang, Z., Cherbas, L., Chen, J.D., McKeown, M., Cherbas, P. & Evans, R.M. 1993. Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature, 366(6454): 476-479.
Yong, L., Lambert, M.H. & Xu, H.E. 2003. Activation of nuclear receptors: a perspective from structural genomics. Structure, 11: 714-746.
Young, D.C. 2009. Computational Drug Design: A Guide for Computational and Medicinal Chemists. John Wiley & Sons, Inc. Hoboken, New Jersey. pp. 344.
Yu, F.L., Wu, G., Liu, T.J., Zhai, B.P. & Chen, F.J. 2008. Effects of irrigation on the performance of cotton bollworm, Helicoverpa armigera (Hübner) during different pupal stages. International Journal of PestManagement, 54: 137-142.
Zotti, M.J., Christiaens, O., Rouge, P., Grutzmacher, A.D., Zimmer, P.D. & Smagghe, G. 2012. Sequencing and structural homology modeling of the ecdysone receptor in two chrysopids used in biological control of pest insects. Ecotoxicology (London, England), 21(3): 906-918.