Anderson, R.K.I. & Jayaraman, K. 2003. Influence of carbon and nitrogen sources on the growth and sporulation of Bacillus thuringiensis var Galleriae for biopesticide production. Chemical and Biochemical Engineering, 17 (3): 225–231.
Azmi, N.U., Ghafar, N.S.A., Yin, C.J., Yakubu, S., Adli, A.A. & Aziz, N.A.A. 2015. Toxicity of Bacillus thuringiensis biopesticide produced in shrimp pond sludge as alternative culture medium against Bactrocera dorsalis (Hendel). Acta Biology of Malaysia, 4(5): 16–20.
Ballardo, C.,
Barrena, R.,
Artola, A. &
Sánchez, A. 2017. A novel strategy for producing compost with enhanced biopesticide properties through solid–state fermentation of biowaste and inoculation with
Bacillus thuringiensis. Waste Management, 70: 53–58.
Baur, R., Binder, S. & Benz, G. 1991. Nonglandular leaf trichomes as short–term inducible defence of the grey alder, Alnus incana (L.), against the chrysomelid beetle, Agelastica alni L. Oecologie, 87(2): 219–226.
Brar, S.K., Verma, M., Tyagi, R.D., Valéro, J.R. & Surampalli, R.Y. 2005. Starch industry wastewater–based stable Bacillus thuringiensis liquid formulations. Journal of Economic Entomology, 98: 1890–1898.
Cannon, R.J. 1993. Prospects and progress for Bacillus thuringiensis–based pesticides. Pest Management Science, 37(4): 331–335.
Chandrashekhar Devidas, P., Hemant Pandit, B. & Satish Vitthalrao, P. 2014. Evaluation of different culture media for improvement in bioinsecticides production by indigenous Bacillus thuringiensis and their application against larvae of aedes aegypti. Scientific World Journal, 1: 1–7.
Elleuch, J., Jaoua, S., Ginibre, C., Chandre, F., Tounsi, S. & Zghal, R.Z. 2016. Toxin stability improvement and toxicity increase against dipteran and lepidopteran larvae of Bacillus thuringiensis crystal protein Cry2Aa. Pest Management Science, 72(12): 2240–2246.
Ferro, D.N., Yuan, Q.C., Slocombe, A. & Tuttle, A.F. 1993. Residual activity of insecticides under field conditions for controlling the Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 86: 511–516.
Gorret, N., Rosli, S.K., Oppenheim, S.F., Willis, L.B., Lessard, P.A. & Rha, C.K. 2004. Bioreactor culture of oil palm (Elaeis guineensis) and effects of nitrogen source, inoculum size, and conditioned medium on biomass production. Journal of Biotechnology, 108: 253–63.
Icgen, Y., Icgen, B. & Ozcengiz G. 2002. Regulation of crystal protein biosynthesis by Bacillus thuringiensis: II. Effects of carbon and nitrogen sources, Research of Microbiology, 153: 605–609.
Kalantari M., Marzban R., Magollifard Z., & Abbasipour H. 2013. Study of virulence and molecular characteristics of some Bacillus thuringiensis isolates on cotton bollworm and diamondback moth. Biocontrol in Plant Protection, 2 (2): 17–26.
Langenbruch, G.A., Krieg, A., Huger, A.M. & Schnetter, W. 1985. Erste feldversuche zur bekämpfung der larven des kartoffelkäfers (Leptinotarsa decemlineata) mit Bacillus thuringiensis subsp. tenebrionis. Mededelingen Faculteit Landbouwkunde Rijksuniversiteit Gent, 50: 441–449.
Marrone, P.G. 1999. Microbial pesticides and natural products as alternatives. Outlook on Agriculture, 28(3): 149–154.
Marzban R. 2012. Investigation on the suitable isolate and medium for production of Bacillus thuringiensis. Journal of Biopesticides, 5: 144–147.
Marzban R., Saberi F., & Shirazi M.M. 2016. Microfiltration and ultrafiltration of Bacillus thuringiensis fermentation broth: Membrane performance and spore-crystal recovery approaches. Brazilian Journal of Chemical Engineering, 33 (4): 783–791.
Mazid, S. & Kalita, J.C. 2011. A review on the use of biopesticides in insect pest management. International Journal of Science Advanced Technology, 1: 169–178.
Melo, A.L.d.A., Soccol, V.T. & Soccol, C.R. 2016. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Critical Review of Biotechnology, 36(2): 317–326.
Oberemok, V.V., Laikova, K.V., Gninenko, Y.I., Zaitsev, A.S., Nyadar, P.M. & Adeyemi T.A. 2015. A short history of insecticides. Journal of Plant Protection Research, 55: 221–226.
Osman, G., Already, R., Assaeedi, A., Organji, S., El–Ghareeb, D., Abulreesh, H. & Althubiani, A. 2015. Bioinsecticide Bacillus thuringiensis a comprehensive review. Egyptian Journal of Biological Pest Control, 25(1): 271–288.
Ozkan, M., Dilek, F.B., Yetis, U. & Ozcengiz, G. 2003. Nutritional and cultural parameters influencing antidipteran delta–endotoxin production. Research of Microbiology, 154 (1): 49–53.
Rao, Y.K., Tsay, K.J., Wu, W.S. & Tzeng, Y.M. 2007. Medium optimization of carbon and nitrogen sources for the production of spores from Bacillus amyloliquefaciens B128 using response surface methodology. Process Biochemistry, 42: 535–541.
Rodriguez, P., Cerda, A., Font, X., Sanchez, A. & Artola, A. 2019. Valorisation of biowaste digestate through solid–state fermentation to produce biopesticides from Bacillus thuringiensis. Waste Management, 93: 63–71.
Saberi F., Marzban R. & Ardjmand M. 2014. Optimization of Bacillus thuringiensis production process in lab Fermenter. Biological Control of Pests & Plant Diseases, 3(2): 165–172.
Sarrafzadeh, M.H. 2014. Nutritional requirements of Bacillus thuringiensis during different phases of growth, sporulation and germination evaluated by Plackett–Burman method. Iranian Journal of Chemistry and Chemical Engineering, 31(4): 131–136
Sayed, A.M. & Behle, R.W. 2017. Evaluating a dual microbial agent biopesticide with Bacillus thuringiensis var. kurstaki and Beauveria bassiana blastospores. Biocontrol Science and Technology, 27(4): 461–474.
Schnepf, H.E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zigler, D.R. & Dean, D.H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62 (3): 775–806.
Sezen, K., Muratoglu, H., Nalcacioglu, R., Mert, D., Demirbag, Z. & Kati, H. 2008. Highly pathogenic Bacillus thuringiensis subsp. tenebrionis from European shot–hole borer, Xyleborus dispar (Coleoptera: Scolytidae). New Zealand Journal of Crop Horticulture Science, 36:v77–84.
Suchy, J. 1988. Note on the biology of the Chrysomelid, Agelastica alni (L.) and the predator Hister helluo Truqui. Zpravy Muzei Zapadoces Kraj, 93: 36–37.
Thurston, G.S. 1998. Biological Control of Elm Leaf Beetle. Journal of Arboriculture, 24(3): 154–159.
Tokcaer, Z., Bayraktar, E., Mehmetoglu, U., Ozcengiz, G. & Alaeddinoglu, N.G. 2006. Response surface optimization of antidipteran delta–endotoxin production by Bacillus thuringiensis subsp. israelensis HD 500, Process Biochemistry, 41: 350–355.
Urban, J. 1999. Results of the study of biology and harmfulness of alder leaf beetle (Agelastica alni L.) (Chrysomelidae: Coleoptera). Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 47: 47–71.
Yezza, A., Tyagi, R.D., Valero, J.R. & Surampalli, R.Y. 2004. Scale–up of biopesticide production processes using wastewater sludge as a raw material. Journal of Indian Microbiology and Biotechnology, 31: 545–552.
Zouari, N., Achour, O. & Jaoua, S. 2002. Production of delta–endotoxin by Bacillus thuringiensis subsp kurstaki and overcoming of catabolite repression by using highly concentrated gruel and fishmeal media in 2– and 20–dm 3 fermenters. Journal of Chemical Technology and Biotechnology, 77: 877–882.