Ahn, S.J., Shin, R. & Schachtman, D.P. 2004. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiology, 134: 1135–1145.
Aeini, M., Mirzaee, H., Taghavi, Khodakaramian, G.R. & Amiri Mazhar, M. 2014. Occurrence of crown gall disease on Ficus benjamina in Fars and Isfahan provinces of Iran, Archives of Phytopathology and Plant Protection, 47(18): 2257–2262.
Allen, O.N. & Holding, A.J. 1974. Genus II. Agrobacterium Conn 1942, 359.In R.E. Buchanan & N. E. Gibbons (Eds.), Bergey’s manual of determinative bacteriology (8th ed., pp. 264–267). Baltimore: Williams and Wilkins Co.
Baker, K.F. & Cook, R.J. 1974. Biological control of plant pathogens. Freeman and Company Publishers, San Francisco.
Basavand, E., Charkhabi, N.F., Khodaygan, P. & Rahimian, H. 2020. Agrobacterium pusense, a new plant tumour–inducing pathogen isolated from Lawson cypress. Forest Pathology, 00, e12655.
Bobeú, I., Comes, I., Drăcea, A. & Lazăr, A. 1972. Fitopatologie. Editura Didactică úi Pedagogică, Bucureúti, p.408.
Burr, T.J., Bazzi, C. & Brissett, M.N. 1991. Crown gall, Agrobacterium tumefaciens (Smith & Townsend) Conn. Integrated Pest Management.
Bell, C.R., Dickie, G.A. & Chan, J.W.Y.F. 1995. Variable response of bacteria isolated from grapevine xylem to control grape crown gall disease in planta. American Journal of Enology and Viticulture, 46: 499–508.
Biondi, E., Bini, F., Anaclerio, F. & Bazzi, C. 2009. Effect of bioagents and resistance inducers on grapevine crown gall. Phytopathology Mediterranean, 48: 379–384.
Burr, T.J. & Reid, C.L. 1994. Biological control of grape crown gall with non–tumorigenic Agrobacterium vitis strain F2/5. American Journal of Enology and Viticulture, 45: 213–219.
Bazzi, C., Alexandrova, M., Stefani, E., Anaclerio, F. & Burr, T.J. 1999. Biological control of Agrobacterium vitis using non–tumorigenic agrobacteria. Vitis, 38: 31–35.
Burr, T.J., Bishop, A.L., Katz, B.H., Blanchard, L.M. & Bazzi, C. 1987a. A root–specific decay of grapevine caused by Agrobacterium tumefaciens and A. radiobacter biovar 3. Phytopathology, 77: 1424–1427.
Chen, F., Guo, Y.B., & Wang, H.M. 2007. Biological control of grape crown gall by Rahnella aquatitis HX2. Plant Disease, 91: 957–963.
Chen, M., Wang, J., Liu, B., Zhu, Y., Xiao, R., Yang, W., Ge, C. & Chen, Z. 2020. Biocontrol of tomato bacterial wilt by the new strain
Bacillus velezensis FJAT–46737 and its lipopeptides. BMC Microbiology, 20:160
https://doi.org/10.1186/s12866–020–01851–2.
Cao, X.H., Zhao, S.S., Liu, D.Y., Wang, Z., Niu, L.L., Hou, L.H. & Wang, C.L. 2011. ROS–Ca2+ is associated with mitochondria permeability transition pore involved in surfactin–induced MCF–7 cells apoptosis. Chemico–Biological Interactions, 190: 16–27.
Eastwell, K.C., Sholberg, P.L. & Sayler, R.J. 2006. Characterizing potential bacterial biocontrol agents for suppression of Rhizobium vitis, causal agent of crown gall disease in grapevines. Crop Protection, 25: 1191–1200.
Ferrigo, D., Causin, R. & Raiola, A. 2017. Effect of potential biocontrol agents selected among grapevine endophytes and commercial products on crown gall disease. Biocontrol, 62: 821–833
Frikha–Gargouri, O., Ben, Abdallah, D., Bhar, I. & Tounsi, S. 2017. Antibiosis and bmyB Gene Presence as Prevalent Traits for the Selection of Efficient Bacillus Biocontrol Agents against Crown Gall Disease. Frontiers in Plant Science, 8: 1363.
Ganjeh, A., Rahimian, H. & Basavand, E. 2020a. Agrobacterium tumefaciens causing crown and stem gall disease of citrus propagation nursery in Iran. Journal of Plant Pathology.
Gerik, J.S. & Wang, D. 2008a. Dose response of Agrobacterium tumefaciens to soil fumigants. Page 110 in: Proc Annu. Intl. Res. Conf. Methyl Bromide Alternatives Emissions Reductions.
Gerik, S.J. & Wang, D. 2008b. Control of Agrobacterium tumefaciens with soil fumigants. USDA/ARS San Joaquin Valley Agricultural Sciences Center, Parlier, CA.
Gheorghie, C., Cristea, S. 2002. Fitopatologie. Vol.I, Editura Ceres, Bucuresti.
Hao, L., Kemmenoe, D.J., Orel, D.C. & Burr, T. 2017. The impacts of tumorigenic and non–tumorigenic Agrobacterium vitis strains on graft strength and growth of grapevines. Plant Disease, 102: 375–381.
Habbadi, K., Benkirane, R., Benbouazza, A., Bouaichi, A., Maafa, I., Chapulliot, D. & Achbani, E.H. 2017.Biological control of grapevine crown gall caused by Allorhizobium vitis using bacterial antagonists. International Journal of Science Research, 6: 1390–1397.
Howell, C.R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases. Plant disease, 87: 4–10.
Hervas, A., Landa, B., Datnoff, L.E. & Jimenez–Diaz, R.M. 1998. Effects of commercial and indigenous microorganisms on Fusarium wilt development in chickpea. Biological Control, 13: 166–176.
Huszcza, E. & Burczyk, B. 2006. Surfactin isoforms from Bacillus coagulans. Zaturforsch [C], 61: 727–733.
Jetiyanon, K., Fowler, W.D. & Kloepper, J.W. 2003. Broad–spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Disease, 87: 1390–1394.
Jones, D.A., Ryder, M.H., Clare, B.G., Farrand, S.K. & Kerr, A. 1988. Construction of a Tra− deletion mutant of pAgK84 to safeguard the biological control of crown gall. Molecular and general genetics, 212: 207–214.
Kado, C.I. 2002. Crown g all. The P lant H ealth Instructor, DOI: 10.1094/PHI–I–2002–1118–01.
Kaewnum, S., Zheng, D., Reid, C.L., Kameka L. Johnson, J.C.G. & Burr, T.J. 2013. A host–specific biological control of grape crown gall by Agrobacterium vitis strain F2/5: its regulation and population dynamics. Phytopathology, 103: 427–435.
Karimi, E., Safaie, N., Shams–Baksh, M. & Mahmoudi, B. 2016. Bacillus amyloliquefaciens SB14 from rhizosphere alleviates Rhizoctonia damping–off disease on sugar beet. Microbiological research, 192: 221–230.
Kawaguchi, A., Inoue, K., Tanina, K. & Nita, M. 2017. Biological control for grapevine crown gall using nonpathogenic Rhizobium vitis strain ARK–1. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 93: 547–560.
Kazempour, N., Roustaei, A. & Rezaei, M. 2007. Isolation of Agrobacterium tumefaciens, the causal agent of crown gall disease, from cypress in Kashan. Iranian Journal of Plant Pathology, 43: 398–409.
Kennedy, B.W. & Alcorn, S.M. 1980. Estimates of U.S. crop losses to prokaryote plant pathogens. Plant Disease, 64: 674–676.
Kerr, A. 1980. Biological control of crown gall through production of Agrocin 84. Plant Disease, 64: 25–30
Kim, J.G., Park, B.K., Kim, S.U.,
Choi, D.,
Nahm, B.H.,
Moon, J.S.,
Reader, J.S.,
Farrand, S.K. &
Hwang, I. 2006. Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan horse antibiotic that controls crown gall. Proceedings of the National Academy of Sciences of the United States, 103: 8846–8851.
Khmel, I.A., Sorokina, T.A., Lemanova, N.B., Lipasova, V.A., Metlitski, O.Z., Burdeinaya, T.V. & Chernin, L.S. 1998. Biological control of crown gall in grapevine and raspberry by two Pseudomonas spp. with a wide spectrum of antagonistic activity. Biocontrol science and technology, 8: 45–57.
Kracht, M., Rokos, H., Ozel, M., Kowall, M., Pauli, G. & Vater, J. 1999. Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. Journal of Antibiotic, 52 (7): 613–619.
Krimi, Z., Petit, A., Mougel, C., Dessaux, Y. & Nesme, X. 2002. Seasonal fluctuation sand long–term persistence of pathogenic populations of Agrobacterium spp. in soils. Applied Environmental Microbiology, 68: 3358 –3365
Kuzmanović, N., Puławska, J., Hao, L. & Burr, T.J. 2018. The Ecology of Agrobacterium vitis and Management of Crown Gall Disease in Vineyards.
Lassalle, F., Campillo, T., Vial, L., Baude, J.,
Costechareyre, D.,
Chapulliot, D.,
Shams, M.,
Abrouk,
Céline Lavire, D.,
Oger–Desfeux, C.,
Hommais, F.,
Guéguen, L.,
Daubin, V.,
Muller, D. &
Nesme, X. 2011. Genomic species are ecological species as revealed by comparative genomics in
Agrobacterium tumefaciens. Genome Biology and Evolution, 3: 762–781.
Lee, S.W., Lee, S.H., Balaraju, K., Park, K.S., Nam, K.W., Park, J.W. & Park, K. 2014. Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth–promoting rhizobacteria (PGPR) strain Bacillus subtilis 21–1 under two different soil conditions. Acta Physiology of Plant, 36: 1353–1362.
Lemanova, N.B. 1990. Biological preparations for protection of g rapes against bacterial canker. Sadovodstvo i Vinogradarstvo, 11: 30–32.
Lindström, K. & Young, J.P.W. 2011. International Committee on Systematics of Prokaryotes. Subcommittee on the taxonomy of Agrobacterium and Rhizobium, Minutes of the meeting, 7 September 2010, Geneva, Switzerland. International journal of systematic and evolutionary microbiology, 61: 3089–3093.
Mafakheri, H., Taghavi, S.M., Banihashemi, Z., Osdaghi. E. & Lamichhane, J.R. 2017. Pathogenicity, host range and phylogenetic position of Agrobacterium species associated with sugar beet crown gall outbreaks in Southern Iran.
European Journal of Plant Pathology, 147(3): 721–730.
Mafakheri, H., Taghavi, S.M., Puławska, J.,
de Lajudie, P.,
Lassalle, F. &
Osdaghi, E. 2019. Two Novel Genomospecies in the
Agrobacterium tumefaciens Species Complex Associated with Rose Crown Gall. Phytopathology, 109: 1859–1868.
Manafi, R., Babai–Ahri, A. & Arzanlou, M. 2012. Assessment of resistance in tomato varieties under greenhouse conditions against Fusarium wilt, and biological control of the disease. Quarterly Journal of Agricultural Science, 22: 145–158.
Miranda, A., Janssen, G., Hodges, L.,
Peralta, E.G. &
Ream, W. 1992.
Agrobacterium tumefaciens transfers extremely long T–DNAs by a unidirectional mechanism. Journal of Bacteriology, 174: 2288–2297.
Mirzaei, H., Narimani, S., Aeini, M., Taghavi, M., Tarighi, S., Javaheri, M. 2015. Investigation the performance and biological control of the various tomato cultivarsagainst the bacterial wilt disease Ralstonia solanacearum. Biocontrol in Plant Protection, 2: 47–57.
Mousavi, S.A., Österman, J., Wahlberg, N.,
Nesme, X., Lavire, C.,
Vial, L.,
Paulin, L.,
de Lajudie, P. &
Lindström, K. 2014. Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Systematic and Applied Microbiology, http://dx.doi.org/10.1016/j.syapm.2013.12.007.
Mousavi, S.A., Willems, A., Nesme, X.,
de Lajudie, P. &
Lindström, K. 2015. Revised phylogeny of Rhizobiaceae: Proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Systematic and Applied Microbiology,
http://dx.doi.org/10.1016/j.syapm. 2014.12.003.
Nazari, F., Safaie, N., Soltani, B.M., Shams–Bakhsh, M. & Sharifi, M. 2016. The effect of Bacillus subtilis producing Surfactin in ROS production and transformation efficiency of tobacco cells. Archives of Phytopathology and Plant Protection.
Nazari, F., Safaie, N., Soltani, B.M., Shams–Bakhsh, M. & Sharifi, M. 2017a. Bacillus subtilis affects miRNAs and Flavanoids production in Agrobacterium–Tobacco interaction, Plant Physiology and Biochemistry, 118: 98–106.
Nazari, F., Safaie, N., Soltani, B.M., Shams–Bakhsh, M. & Sharifi, M. 2017b. The effect of environmental factors on Surfactin production of Bacillus subtilis. Journal of Crop Protection, 6(1): 89–97.
Nazari, F., Safaie, N., Soltani, B.M., Shams–Bakhsh, M. & Sharifi, M. 2018. Effect of Surfactin on inducing tobacco resistance against Agrobacterium. Iranian Journal of Plant Protection Science, 49(2): 255–262.
Nazari, F. & Safaie, N. 2020. Using of auxin signaling pathway to investigate the contrast between two different strains of Bacillus against Agrobacterium. Biocontrol in Plant Protection, 8(1): 1–9.
Nazari, F., Safaie, N. & Momeni, H. 2021. Evaluation of fluorescence–activated cell sorting technology in agrobacterium biocontrol. Journal of Crop Protection, 10(2): 391–399.
Nejad, P. & Johnson, P. A. 2000. Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biological Control, 18: 208–215.
Ophel, K. & Kerr, A. 1990. Agrobacterium vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. International Journal of Systematic and Evolutionary Microbiology, 40: 236 –241.
Ongena, M. & Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiology, 16: 115–125.
Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B.,
Arpigny, J.L. &
Thonart, P. 2007. Surfactin and fengycin lipopeptides of
Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9: 1084–1090.
Panday, D., Schumann, P. & Das, S.K. 2011. Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.). International Journal of Systematic and Evolutionary Microbiology, 61: 2632–2639.
Pârvu, M. 2010. Ghid practic de fitopatologie, EdiĠia a III–a, Editura Presa Universitară Clujană, p. 386.
Peypoux, F., Bonmatin, J. M. & Wallach, J. 1999. Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology, 51: 553–563.
Pristchepa, L., Voitka, D., Kasperovich, E. & Stepanova, N. 2006. Influence of Trichodermin–blon the decrease of fiber flax infection by diseases and the improvement of its production quality. Plant Protection Research, 46: 97–102.
Pu, X–A. & Goodman, R. N. 1993. Effects of fumigation and biological control on infection of indexed crown gall free grape plants. American Journal of Enology and Viticulture, 44: 241–248.
Puławska, J., Willems, A., De Meyer, S.E. & Süle, S. 2012. Rhizobium nepotum sp. nov. isolated from tumors on different plant species. Systematic and Applied Microbiology, 35: 215–220.
Rouhrazi, K. & Rahimian, H. 2014. Biochemical and genetic characterisation of Agrobacterium tumefaciens the causal agent of walnut crown gall disease in Iran. Archives of Phytopathology and Plant Protection, 47 (20): 2493–2500.
Saito, K., Watanabe, M., Matsui, H
., Yamamoto, M.,
Ichinose, Y.,
Toyoda, K., Kawaguchi, A. &
Noutoshi, Y. 2018. Characterization of the suppressive effects of the biological control strain VAR03–1 of
Rhizobium vitis on the virulence of tumorigenic
R. vitis. Journal of Genetic and Plant Pathology, 84: 58–64.
Severin, V. & Dejeu, L. 1994. Bolile úi dăunătorii viĠei de vie. Editura Ceres Bucuresti, p.124.
Sharma, P., Vignesh–Kumar, P., Saravanan, K., Sharma, M., Saini, M. & Singh, D. 2011. Biocontrol genes from Trichoderma species. African Journal of Biotechnology, 10: 19898–19907.
Sheppared, J., Jumarie, C., Coopre, D. & Laprade, R. 1991. Ionic channels induced by surfactin in planar lipid bilayer membrane. Biochimica et biophysica acta, 1064: 13–23.
Siameto, E.N., Okoth, S., Amugune, N.O. & Chege, N.C. 2011. Molecular characterization and identification of biocontrol isolates of Trichoderma harzianum from Embu District, Kenya. Tropical and Subtropical Agroecosystems, 13: 81–90.
Sindhu, S.S., Rakshiya, Y.S. & Sahu, G. 2009. Rhizosphere bacteria and their role in biological control of plant diseases. Pest Technology, 3: 10–21.
Sobiczewski, P., Karczewski, J. & Berczynski, S. 1991. Biological control of crown gall Agrobacterium tumefaciens in Poland. Fruit Science Report, 18: 125–132.
Staphorst, J.L., Van–Zyl, F.G.H., Strijdom, B.W. & Uroenewold, Z.E. 1985. Agrocin–producing pathogenic and nonpathogenic biotype–3 strains of Agrobacterium tumefaciens active against biotype–3 pathogens. Current Microbiology, 12:45–52.
Sun, Y.M., Horng, C.Y., Chang, F.L., Cheng, L.C. & Tian, W.X. 2010. Biosorption of lead, mercury and cadmium ions by Aspergillus tereuss immobilized in a natural matrix. Polish Journal of Microbiology, 59: 37–44.
Vacheron, J., Desbrosses, G., Bouffaud, M.L., Touraine, B. & Prigent–Combaret, C. 2013. Plant growth promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4: 1–19.
Wang, X., Zhao, D., Shen, L., Jing, C. & Zhang, C. 2018. Application and Mechanisms of Bacillus subtilis in Biological Control of Plant Disease. Role of Rhizospheric Microbes in Soil. Springer, 225–250.
Warren, J.G., Kasun, G.W., Leonard, T. &
Kirkpatrick, B.C. 2016. A phage display–selected peptide inhibitor of
Agrobacterium vitis polygalacturonase. Molecular Plant Pathology, 17: 480–486.
Webster, J., Dos–Santos, M. & Thomson, J.A. 1986. Agrocin–producing Agrobacterium tumefaciens strain active against grapevine isolates. Applied Environmental Microbiology, 52: 217–219.
Yang, Y.L., Li, J.Y., Wang, J.H. &Wang, H.M. 2009. Mutations affecting chemotaxis of Agrobacterium vitis strain E26 also alter attachment to grapevine roots and biocontrol of crown gall disease. Plant Pathology, 58: 594–605.
Young, J.M., Kuykendall, L.D., Martinez–Romero, E.,
Kerr, A. &
Sawada, H. 2001. A revesion of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and
Allorhizobium undicola De Lajudie
et al. 1998 as new combinations:
Rhizobium radiobacter,
R. rhizogenes, R. rubi,
R. undicola and
R. vitis. International Journal of Systematic and Evolutionary Microbiology, 51: 89 –103.
Young, J.M., Kuyknall, D.L., Martinez, E. & Sawada, H. 2003. Classification and nomenclature of Agrobacterium and Rhizobium–a replay to Frrand et al. International Journal of Systematic and Evolutionary Microbiology, 53: 1689–1695.
Young, J.M., Park, D.C. & Weir, B.S. 2004. Diversity of 16S rDNA sequences of Rhizobium spp. Implications for species determinations. FEMS Microbiology letters, 238: 125–31.
Zäuner, S., Crespan, J.E., Burr, T.J. & Ullrich, C.I. 2006. Inhibition of crown gall induction by Agrobacterium vitis strain F2/5 in grapevine and Ricinus. Vitis, 45: 131–139.
Zheng, D. & Burr, T.J. 2016. Inhibition of grape crown gall by Agrobacterium vitis F2/5 requires two nonribosomal peptide synthetizes and one polyketide synthase. Molecular and Plant Microbe Interaction, 29: 109–118.