Ajamhassani, M., Sendi, J.J., Zibaee, A., Askary, H. & Farsi, M.J. 2013. Immunoliogical Responses of Hyphantria Cunea (Drury) (Lepidoptera: Arctiidae) to Entomopathogenic Fungi, Beauveria Bassiana (Bals.–Criy) and Isaria Farinosae (Holmsk.) Fr. Journal of Plant Protection Research, 53: 110–118.
Ajamhassani, M. 2014. Study on cellular defense of larvae of Utethesia pulchella (Lepidoptera: Arctiidae) against to Beauveria bassiana and Isaria farinosae. Biocontrol in Plant Protection, 2(1): 57–67. (In Persian with English summary).
Ajamhassani, M. 2015. Study of cytology of hemocytes in the Spurge hawk–moth, Hyles euphorbiae L. (Lepidoptera: Sphingidae). Plant Protection (Agricultural Science Journal), 38(3): 49–62. (In Persian with English summary)
Ajamhassani, M. 2019. Study on morphology and frequency of hemocytes in Osphranteria coerulescense (Redt) (Coleoptera: Cerambycidae) and Zeuzera pyrina L. (Lepidoptera: Cossidae) larvae, two wood boring insects of Iran. Iranian Journal of Forest and Range Protection Research, 17(2): 96–106. (In Persian with English summary).
Ajamhassani, M. & Pourali, Z. 2020. Hemogram study and effect of thermal Stresses on abundance of immunocytes in larvae of Goat Moth, Cossus cossus (Lepidoptera: Cossidae). Iranian Journal of Forest and Range Protection Research, 17(2): 239–250. (In Persian with English summary).
Ajamhassani, M. & Mahmoodzadeh, M. 2020. Cellular defense responses of 5th instar larvae of the Apple Ermine Moth, Yponomeuta malinellus (Lepidoptera: Yponomeutidae) against starvation, thermal stresses and entomopathogenic bacteria Bacillus thuringiensis. Journal of Animal Researches, 4(2): 59–68. (In Persian with English summary).
Ajamhassani, M. 2021. Hemocyte changes of larvae of the beet moth, Scrobipalpa ocellatella (Lepidoptera: Gelechiidae) affected by thermal stress. Journal of Entomological Society of Iran, 41(1):101–103. (In Persian with English summary).
Bao, Y., Yamano, Y. & Morishima, I. 2007. Induction of hemolin gene expression by bacterial cell wall components in eri–silkworm, Samia cynthiaricini. Molecular Biology, 146: 147−151.
Beckage, N. E. 2008 Insect Immunology, Academic Press. California.
Blanco, L.A.A., Crispim, J.S., Fernandes, K.M., de Oliveira, L.L., Pereira, M.F., Bazzolli, D.M.S. & Martins, G.F. 2017. Differential cellular immune response of Galleria mellonella to Actinobacillus pleuropneumoniae. Cell and Tissue Research, 370(1): 153–168.
Borges, A.R., Santos, P.N. Furtado, A.F. & Figueiredo, R.C. 2008. Phagocytosis of latex beads and bacteria by hemocytes of the triatomine bug Rhodnius prolixus (Hemiptera: Reduvidae). Micron, 39: 486–49.
Correia, A. A., Wanderley–Teixeira, V., Oliveira, J.V. & Torres, J.B. 2008. Dinámica hemocitaria en larvas de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) tratadas con nim (Azadirachta indica A. Juss). Boletín de Sanidad Vegetal Plagas, 34: 357–365.
Duarte, J.P., Silva, C.E., Ribeiro, P.B. & Carcamo, M.C. 2020. Do dietary stresses affect the immune system of Periplaneta americana (Blattaria: Blattidae)? Brazillian Journal of Biology, 80(1): 73–80.
Ebrahimi, M. & Ajamhassani, M. 2020. The Effects of Starvation Challenges and Nutritional Diets on Immunity System of Indian Meal Moth Plodia interpunctella (Hubner) (Lepidoptera Pyralidae). Invertebrate Survival Journal, 17: 175–185.
Fahimi, A., Kharrizi–pakdel, A. & Talaee–Hassanloui, R. 2008. Evaluation of effect of PxGV–Taiwanii on cabbage moth Plutella xylostella (Lepidoptera: Plutellidae) in laboratory conditions. Pakistan Journal of Biological Sciences, 11(13): 1768– 1770.
Ferré, J. & Van Rie, J. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology, 47: 501–533.
Ghasemi, V., Moharramipour, S. & Jalali Sendi, J. 2013. Circulating hemocytes of Mediterranean flour moth, Ephestia kuehniella Zell. (Lep: Pyralidae) and their response to thermal stress. Invertebrate Survival Journal, 10: 128–140.
Gillespie, J.P., Burnett, C. & Charnley, A.K. 2000. The immune response of the desert locust Schistocerca gregaria during mycosis of the entomopathogenic fungus, Metarhizium anisopliae var acridum. Journal of Insect Physiology, 46: 429–437.
Gupta, A.P. 1985. Cellular elements in the hemolymph. Comprehensive Insect Physiology Biochemistry and Pharmacology, 3: 401–451.
Hannon, E.R., Rodstrom, R.A., Chong, J.M. & Brown, J.J. 2017. Carpenterworm Moth. Washington State University Extension.
Hernandez, S., Lanz, H., Rodriguez, M.H., Torres, J.A., Martinez, P.A. & Tsutsumi, V. 1999. Morphological and cytochemical characterization of female Anopheles albimanus (Diptera: Culicidae) hemocytes. Journal of Medical Entomology, 36: 426–434.
Huang, F., Shi, M. & Yang, Y. 2009. Changes in hemocytes of Plutella xylostella after parasitism by Diadegma semiclausum. Archives of Insect Biochemistry and Physiology, 70(3): 177–187.
Jiang, H., Wang, Y., Ma, C. & Kanost, M.R. 1997. Subunit composition of pro–phenol oxidase from Manduca sexta: molecular cloning of subunit ProPO–P1. Insect biochemistry and molecular biology, 27(10): 835–850.
Jones, J.C. 1967. Changes in the hemocyte picture of Galleria mellonella L. Biological Bulletin, 132: 211–221.
Lavin, e, M.D. & Strand, M.R. 2002. Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology, 32(10): 1295–1309.
Leonard, C., Soderhall, K.N. & Ratcliffe, A. 1985. Studies on prophenoloxidase and protease activity of Balbifer cranifer haemocytes. Insect Biochemistry, 15: 803–810.
Li, T., Yan, D., Wang, X., Zhang, L. & Chen, P. 2019. Hemocyte Changes During Immune Melanization in Bombyx Mori Infected with Escherichia coli. Insects, 10(301): 1–15.
Lubawy, J. & Slocinska, Malgorzata. 2020. Characterization of Gromphadorhina coquereliana hemolymph under cold stress. Scientific Reports.
Ma, G., Roberts, H., Sarjan, M., Feath erstone, N., Lahnstein, J., Akhurst, R. & Schmidt, O. 2005. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Insect Biochemistry and Molecular Biology, 35 (7): 729–739.
Manjula, P., Lalitha, K. & Shivakumar, M.S. 2020. Diet composition has a differential effect on immune tolerance in insect larvae exposed to Mesorhabditis belari, Enterobacter hormaechei and its metabolites. Journal of Experimental Parasitology, 208: 1–7.
Mowlds, P. & Kavanagh, K. 2008. Effect of pre–incubation temperature on susceptibility of Galleriamellonella larvae to infection by Candida albicans. Mycopathologia, 165: 5–12.
Nakahara, Y., Kanamori, Y., Kiuchi, M. & Kamimura, M. 2003. In vitro studies of hematopoiesis in the silkworm: Cell proliferation in and hemocyte discharge from the hematopoietic organ. Journal of Insect Physiology, 49: 907–916.
Negreiro, M.C.C., Andrade, F.G.D. & Falleiros, Â.M.F. 2004. Sistema imunológico de defesa em insetos: uma abordagem em lagartas da soja, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), resistentes ao AgMNPV. Semina: Ciências Agrárias, 25(4): 293–308.
Söderhäll, K. & Cerenius, L. 1998. Role of the prophenoloxidase–activating system in invertebrate immunity. Current Opinion in Immunology, 10(1): 23–28.
Pourali, Z. & Ajamhassani, M. 2018. The effect of thermal stresses on the immune system of the potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Journal of Entomological Society of Iran.Supplementary, 37(4): 515–525.
Rahman, M.M., Roberts, H.L.S., Sarjan, M., Asgari, S. & Schmidt, O. 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. . Proceedings of the National Academy of Sciences of the United States of America, 101(9): 2696–2699.
Ribeiro, L., Teixeira, V., Cunha, F., Teixeira, A. & Siqueira, H. 2012. Immunological response of resistant and susceptible Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis. Revista Colombiana de Entomología, 38(2): 208–214.
Sayyed, A.H., Raym ond, B., Ibiza–Palacios, M.S., Escriche, B. & Wright, D.J. 2004. Genetic and biochemical characterization of field–evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Applied and Environmental Microbiology, 70(12): 7010–7017.
Shamakhi, L., Zibaee, A., Karimi, A. & Hoda, H. 2019. Effect of thermal stress on the immune responses of Chilo suppressalis walker (Lepidoptera: Crambidae) to Beauveria bassiana. Journal of Thermal Biology, 84: 136–145.
Stanley, D. & Miller, J.S. 2006. Eicosanoid actions in insect cellular immune functions. Entomologia Experimentalis ET Applicata, 119: 1–13.
Strand, M.R. 2008. Insect hemocytes and their role in immunity. Insect immunology, 25–47.
Vengateswari, G., Arunthirumeni, M. & Shivakumar, M.S. 2020. Effect of food plants on Spodoptera litura (Lepidoptera: Noctuidae) larvae immune and antioxidant properties in response to Bacillus thuringiensis infection. Toxicology Reports, 1428– 1437.
Whalon, M.E., Mota –Sanchez, D. & Hollingworth, R.M. 2008. Analysis of global pesticide resistance in arthropods. p. 5–31. In: Whalon, M. E. (Ed.). Global Pesticide Resistance in Arthropods. CABI Publishing. Wallingford. United States of America. 192 p.
Zhao, J.Z., Collins, H.L., Li, Y.X., Mau, R.F.L., Thompson, G.D., Hertlein, M. Andaralo, J.T., Boykin, R. & Shelton, A.M. 2006. Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance of spinosad, indoxacarb, and emamectin benzoate. Journal of Economic Entomology, 99(1): 176–181.