کاربرد واکنش بویایی دشمنان طبیعی در انتخاب گونه مناسب برای کنترل بیولوژیک: بررسی مقایسه‌ای زنبورهای Trichogramma evanescens West و T. brassicae Bezd.

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاه‌پزشکی، دانشکده کشاورزی و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 موسسۀ تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

واکنش بویایی و ویژگی­های زیستی دو گونه زنبور Trichogramma evanescens (Te) و T. brassicae (Tb) در شرایط آزمایشگاهی انجام شد. تیمارها شامل تخم کرم گلوگاه انار و قطعات سالم و آلوده تاج، دانه و پوست میوه انار و برگ سالم و له شده درخت انار بود. دستگاه بویایی سنجی شامل یک لولۀ شیشه­ای دو شاخه (Y شکل) با زاویۀ 30 درجه بود. برای هر تیمار 90 عدد زنبور ماده جفتگیری کرده با طول عمر 24–0 ساعت در سه تکرار (30 زنبور) در نظر گرفته شد. به منظور بررسی ارتباط احتمالی بین قدرت بویایی زنبورها و کارایی آن­ها، ویژگی­های زیستی هر یک از این دو گونه روی تخم کرم گلوگاه با استفاده از رویکرد جدول زندگی دوجنسی بررسی شد. نتایج بویایی­سنجی نشان داد حشرات کامل زنبور ماده و جفتگیری کرده Te به طور معنی­داری به بوهای تخم کرم گلوگاه، تاج و دانۀ انار سالم و آلوده جلب می‌شوند. در حالی‌که، زنبور Tb به هیچ‌کدام از تیمارها در مقایسه با هوای تمیز به­طور معنی­دار پاسخ نداد. نتایج بررسی ویژگی­های زیستی مشخص کرد افراد نر (70/10 روز) و ماده (52/10 روز) زنبور Te به­طور معنی­داری نسبت به افراد نر (20/11 روز) و ماده (95/10 روز) زنبور Tb دوره رشدی نابالغ کوتاه‌تری داشتند. طول عمر زنبورهای ماده Te و Tb به ترتیب 3 و 2 روز به­دست آمد. نرخ خالص تولید مثل و نرخ ذاتی افزایش جمعیت در زنبورهای Te و Tb به ترتیب 56/16 فرد نتاج و 2337/0 روز1 و 20/15 فرد نتاج و 2220/0 روز1 برآورد شد. نرخ تبدیل میزبان به تخم پارازیتویید (Qp) در هر دو گونه زنبور معادل یک بدست آمد. در سایر پراسنجه­ها نیز گونه T. evanescens نسبت بهT. brassicae برتری نسبی داشت. در این مقاله، امکان کاربرد روش بویایی‌سنجی به­جای بررسی‌های زمان­بر تعیین ویژگی­های غالبا متغیر زیستی برای انتخاب دشمن طبیعی مناسب، مورد  بحث قرار گرفته است.

کلیدواژه‌ها


Ahmadi, S. & Poorjavad, N. 2018. Behavioral and biological effects of exposure to Tuta absoluta (Lepidoptera: Gelechiidae) sex pheromone on several Trichogramma (Hymenoptera: Trichogrammatidae) populations. Journal of Economic Entomology, 111: 2667–2675.
Akhtar, M. & Akhtar, M.E. 1998. Adolf Friedrich Johann Butenandt. 24 March 1903–18 January 1995. Biographical Memoirs of Fellows of the Royal Society, 44: 79–92.
Al–Jalely, B.H. & Xu, W. 2021. Olfactory sensilla and olfactory genes in the parasitoid wasp Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Insects, 12: 1–15.
Birch, L.C. 1948. The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology, 17: 15–26.
Bonner, J.T. &. Savage, L.J. 1947. Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum. Journal of Experimental Zoology. Part A: Ecological Genetics and Physiology, 106(1): 1–26.
Boo, K.S. & Yang, J.P. 1998. Olfactory Response of Trichogramma chilonis to Capsicum annuum. Journal of Asia–Pacefic Entomology, 1: 123–129.
Chartier, T. 2017. Chemosensation in the marine annelid Platynereis dumerilii: anatomy, physiology, behavior. Ph.D. Dissertation, Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto–Carola, University of Heidelberg, Heidelberg, Germany. pp 238.
Chi, H. 1988. Life–table analysis incorporating both sexes and variable development rate among individuals. Environmental Entomology, 17: 26–34.
Chi, H. 2022. TWOSEX–MSChart: a computer program for the age–stage, two–sex life–table analysis. National Chung Hsing University, Taichung. Available online at: http://140.120.197.173/Ecology/prod02.htm. (Accessed Feb, 2022).
Chi, H. & Liu, H. 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica, 24: 225–240.
Chi, H. & Su, H.Y. 2006. Age–stage, two–sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology, 35: 10–21.
Chi, H. & Yang, T.C. 2003. Two–sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental Entomology, 32: 327–333.
Colazza, S. & Wajnberg, E. 2013. Chemical ecology of insect parasitoids: towards a new era. In: Wajnberg, E. & Colazza, S. (eds), Chemical Ecology of Insect Parasitoids. John Wiley & Sons, Ltd Publishing, UK. pp 1–8.
Farrokhi, S., Shirazi, J. & Attaran, M. R. 2013. Wolbachia effect on olfactory responses and parasitism rate of Trichogramma brassicae in laboratory conditions. Biocontrol in Plant Protection. 1: 65–79.
Fathipour, Y. & Dadpour Moghanloo, H. 2003. Comparative biology of Trichogramma pintoi Voegele wasps Reared on two laboratory hosts. Iranian Journal of Agricultural Sciences, 34: 881–888.
Fatouros, N.E., Pashalidou, F. G., Cordero, W.V.A., van Loon, J.J. A., Mumm, R., Dicke, M., Hilker, M. & Huigens, M.E. 2009. Anti–aphrodisiac compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone production. Journal of Chemical Ecology, 35: 1373–1381.
Haile, A.T., Hassan, S.A., Ogol, C.K.P.O., Baumgartner, J., Sithanatham, S., Monje, J.C. & Zebitz, C.P.W. 2002. Temperature–dependent development of four egg parasitoid Trichogramma species (Hymenoptera: Trichogrammatidae). Biocontrol Science and Technology, 12: 555–567.
Hollis, K.L. & Guillette, L.M. 2015. What Associative Learning in Insects Tells Us about the Evolution of Learned and Fixed Behavior? International Journal of Comparative Psychology, 28: https://doi.org/10.46867/ ijcp.2015.28.01.07
Kaiser L, Pham–Delegue, M.H. & Masson, C. 1989. Behavioural study of plasticity in host preferences of Trichogramma maidis (Hym.: Trichogrammatidae). Physiological Entomology, 14: 53–60.
Kaissling, K.E., 1971. Insect Olfaction.  In: Beidler, L.M. (ed.): Handbook of Sensory physiology IV/1. Springer, Berlin Heidelberg, 351–431.
Kaissling, K.E., 1974. Sensory Transduction in Insect Olfactory Receptors.  In: Jaenicke L. (ed): Biochemistry of Sensory Functions (Colloquium der Gesellschaft für Biologische Chemie in Mosbach / Baden, 25–27, April, 1974), Springer, Berlin, Heidelberg. vol 25. https://doi.org/10.1007/978–3–642–66012–2_15.
Kishani Farahani, H., Ashouri, A., Goldansaz, S.H., Shapiro, M.S., Golshani, A. & Abrun, P. 2014. Associative learning and memory duration of Trichogramma brassicae­. Progress in Biological Sciences, 4: 87–96.
Lashgari, A.A., Talebi, A.A., Fathipour, Y. & Farahani, S. 2010. Study on demographic parameters of Trichogramma brassicae (Bezdenko) (Hym., Trichogrammatidae) on three host species in laboratory conditions. Journal of Entomological Research, 2: 49–60.
Lewis, W.J., Nordlund, D.A., Gueldner, R.C., Teal, P.E.A. & Tumlinson, J.H. 1982. Kairomones and their use for management of entomophagous insects. 13. Kairomonal activity for Trichogramma spp. (Hymenoptera, Trichogrammatidae) of abdominal tips, excretion, and a synthetic sex–pheromone blend of Heliothis zea (Boddie) (Lepidoptera, Noctuidae) moths. Journal of Chemical Ecology, 8: 1323–1331.
Li, L.Y. 1994. Worldwide use of Trichogramma for biological control on different crops: a survey. In: Wajnberg, E. & Hassan, S. A. (eds), Biological control with egg parasitoids, CAB International Publication, 37–53.
Manohar, T.N., Sharma, P.L., Verma, S.C. & Chandel, R.S. 2019. Demographic parameters of the indigenous egg parasitoids, Trichogramma spp., parasitizing the invasive tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egyptian Journal of Biological Pest Control, 29: 9.
Medel, R., Mendez, M.A., Ossa, C.G. & Botto–Mahan, C. 2010. Arms Race Coevolution: The Local and Geographical Structure of a Host–Parasite Interaction. Evolution: Education and Outreach, 3: 26–31. DOI 10.1007/s12052–009–0191–7
Mehrnejad, M.R. & Copland, M.J.W. 2006. Behavioural responses of the parasitoid Psyllaephagus pistaciae (Hymenoptera: Encyrtidae) to host plant volatiles and honeydew. Journal of Entomological Sciences, 9: 31–37.
Mery, F. & Kawecki, T.J. 2002. Experimental evolution of learning ability in fruit flies. Proceedings of the National Academy of Science, USA. 99: 14274–14279. doi:10.1073/pnas.222371199
Mery, F. & Kawecki, T.J. 2004. The effect of learning in experimental evolution of resource preference in Drosophila melanogaster. Evolution, 58: 757–767. doi:10.1111/j.0014–3820.2004.tb00409.x
Moujahed, R., Frati, F., Cusumano, A., Salerno, G., Conti, E., Peri, E. & Colazza, S. 2014. Egg parasitoid attraction toward induced plant volatiles is disrupted by a nonhost herbivore attacking above or below ground plant organs. Frontiers in Plant Science, 5: 601.
Nascimento, P.T., Fadini, M.M., Rocha, M.S., Souza, C.S.F., Barros, B.A., Melo, J.O.F., Von Pinho, R.G. & Valicente, F.H. 2021. Olfactory response of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) to volatiles induced by transgenic maize. Bulletin of Entomological Research, 111: 674–687.
Noldus, L.P.J.J. 1988. Response of the egg parasitoid Trichogramma pretiosum to the sex pheromone of its host Heliothis zea. Entomologia Experimentalis et Applicata, 48: 293–300.
Noldus, L.P.J.J. & van Lenteren, J.C. 1985. Kairomones for the egg parasite Trichogramma evanescens Westwood. II. Effect of contact chemicals produced by two of its hosts, Pieris brassicae L. and Pieris rapae L. Journal of Chemical Ecology, 11: 793–800.
Nordlund, D.A. 1981. Semiochemicals: a review of the terminology. In: Nordlund, D.A., Jones, R.J. & Lewis, W.J. (eds), Semiochemicals: Their Role in Pest Control. John Wiley & Sons, New York, 13–28.
Ozder, N. & Kara, G. 2010. Comparative biology and life tables of Trichogramma cacoeciae, T. brassicae and T. evanescens (Hymenoptera: Trichogrammatidae) with Ephestia kuehniella and Cadra cautella (Lepidoptera: Pyralidae) as hosts at three constant temperatures. Biocontrol Science and Technology, 20: 245–255.
Pashalidou, F.G., Huigens, M.E., Dicke, M. & Fatouros, N.E. 2010. The use of oviposition–induced plant cues by Trichogramma egg parasitoids. Journal of Ecological Entomology, 35: 748–753.
Paul, A.V.N., Singh, S. & Singh, A.K. 2002. Kairomonal effect of some saturated hydrocarbons on the egg parasitoids, Trichogramma brasiliensis (Ashmead) and Trichogramma exiguum, Pinto, Platner and Oatman (Hym., Trichogrammatidae). Journal of Applied Entomology, 126: 409–416.
Pourarian, S., Shirazi, J. & Rasipour, A. 2017. An investigation on the biology and efficiency of Trichogramma spp. on the egg of Pieris rapae under laboratory conditions. Biocontrol in Plant Protection, 4: 39–53.
Rezvani, N. & Shahhosseini, J. 1976. Study on Ecology of Chilo suppressalis W. in East Mazandaran Province. Applied Entomology and Phytopathology, 43: 1–38.
Romeis, J., Babendreir, D., Wackers, F.L. & Shanower, G. 2005. Habitat and plant specificity of Trichogramma egg parasitoids: underlying mechanisms and implications. Basic and Applied Ecology, 6: 215–236.
Rondoni, G., Chierici, E., Giovannini, L., Sabbatini–Peverieri, G., Roversi, P.F. & Conti, E. 2022. Olfactory responses of Trissolcus mitsukurii to plants attacked by target and non–target stink bugs suggest low risk for biological control. Scientific Reports, 12: 1880.
Salehi, F., Shirazi, J., Gharekhani, Gh. & Vaez, N. 2019. Influence of nitrogen level and tomato cultivars on the efficiency of Trichogramma principium (Hymenoptera: Trichogrammatidae) on the eggs of Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Entomological Society of Iran, 39: 156–184.
Salt, G. 1935. Experimental studies in insect parasitism. III. Host selection. Proceedings of the Royal Society B: Biological Sciences, 117: 413–435.
Schmidt, J.M. 1994. Host recognition and acceptance by Trichogramma. In Wagnberg, E. & Hassan, S.A. (eds.), Biological Control with Egg Parasitoids. Guild Ford, UK, 166–200.
Schnee, C., Kollner, T.G., Held, M., Turlings, T.C.J, Gershenzon, J. & Degenhardt, J. 2006. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proceedings of the National Academy of Sciences (PNAS), 103: 1129–1134.
Schneider, D. 1957. Electrophysiological investigation on the antennal receptors of the silk moth during chemical and mechanical stimulation. Experientia 13: 89–91. https://doi.org/10.1007/BF02160110.
Scholler, M. & Hassan, S.A., 2001. Comparative biology and life tables of Trichogramma evanescens and T. cacoeciae with Ephestia elutella as host at four constant temperatures. Entomologia Experimentalis et Applicata, 98: 35–40.
Shakeri, M. 2003. Pomegranate Pests and Diseases. Tasbih publication. Yazd. 126 pp.
Shirazi, J., Farrokhi, S., Attaran, M.R., Naeimi, S. & Dadpour, H. 2021. Biological Pest Control in Iran: Past, Present and Future. Outlooks on Pest Management, 32: 233–239.
Silbering, A.F. & Benton, R. 2010. Ionotropic and metabotropic mechanisms in chemoreception: ‘chance or design’? EMBO reports, 11: 173–179.
Simon, M.I., Krikos, A., Mutoh, N. & Boyd, A. 1985. Sensory Transduction in Bacteria. Current Topics in Membranes and Transport, 23: 3–16.
Tabebordbar, F., Shishehbor, P. & Ebrahimi, E. 2020. Parasitism of Trichogramma evanescens (Hym.: Trichogrammatidae) reared on different egg ages of Anagasta kuehniella (Lep.: Pyralidae). Plant Pest Research, 10: 27–40.
Thompson, W.R. & Parker, H.L. 1927. The problem of host relations with special reference to entomophagous parasites. Parasitology, 19: 1–34.
Vet, L.E.M. & Dicke, M. 1992. Ecology of info–chemical use by natural enemies in a tritrophic context. Annual Review of Entomology, 37: 141–72.
Vinson, S.B. 1988. Comparison of host characteristics that elicit host recognition behavior of parasitoid hymenoptera. In: Gupta, V. K. (ed.), Advances in parasitic hymenoptera research. E.J. Brill Publishers, London, 285–291.
Wilson, J.K. & Woods, H.A. 2016. Innate and learned olfactory responses in a wild population of the egg parasitoid Trichogramma (Hymenoptera: Trichogrammatidae). Journal of Insect Science, 16: 1–8.
Willows, A.O.D., 1978. Physiology of feeding in Tritonia. I. behavior and mechanics. Marine Behaviour and Physiology, 5: 115–135.
Yoshinaga, N. & Mori, N. 2018. Function of the Lepidopteran larval midgut in plant defense mechanisms. In: Tabata, J. (ed.), Chemical Ecology of Insects: Applications and Associations with Plants and Microbes, 28–54.
Zipfel, C. 2014. Plant pattern–recognition receptors. Trends in Immunology, 35: 345–351.