جداسازی و شناسایی باکتری‌های اندوفیت انگور در استان آذربایجان غربی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه میکروبیولوژی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

2 موسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

10.22092/bcpp.2022.356192.299

چکیده

انگور یکی از مهم­ترین محصولات کشاورزی در ایران بوده و استان آذربایجان غربی به­خاطر شرایط مناسب آب و هوایی به­عنوان قطب تولید آن محسوب می­شود. از آنجا که این محصول تنوع وسیعی از باکتری­ها و قارچ­های اندوفیت را دارا بوده و در سال­های اخیر حضور اندوفیت­ها و عملکرد مفید آن‌ها در آن مورد توجه قرار گرفته است، هدف از این پژوهش شناسایی باکتری‌های اندوفیت انگور در استان آذربایجان­غربی بود. در این مطالعه، 67 جدایه باکتری اندوفیت از بخش­های ساقه و ریشه گیاه انگور در سال 1398جداسازی شد. سپس خصوصیات بیوشیمیایی از جمله واکنش فوق حساسیت، بررسی خاصیت فلورسنت و آزمون لهانیدن سیب زمینی و توانایی تولید آنزیم­های پروتئاز، آمیلاز و ژلاتیناز بر روی باکتری­ها انجام شد. یازده جدایه باکتری برای شناسایی مولکولی بر­اساس تعیین ترادف ناحیه 16S rDNA ­انتخاب شدند و مشخص شد جنس­های Bacillus و Pseudomonas فراوانی بیشتری بین جدایه­های شناسایی شده دارند. دو گونه Bosea lathyri و Frigoribacterium faeni و جنس Stenotrophomonas برای اولین بار در ایران به­عنوان باکتری­های اندوفیت انگور گزارش می­شوند. همچنین اثر ضدقارچی باکتری­های اندوفیت بر روی سه گونه قارچی شامل Cytospora chrysosperma ، Fusarium sp. و Chaetomium globosum با روش کشت متقابل انجام شد و سه جدایه GI6، GI43 وGI45 به ترتیب شامل Priestia sp.، Pseudomonas kilonensis وBacillus sp.  بیشترین خاصیت بازدارندگی رشد را در مقابل این قارچ­ها نشان دادند. با توجه به اهمیت باکتری­های اندوفیت، جداسازی و شناسایی آنها از مناطق مختلف کشور ضروری به­نظر می­رسد که در نتیجه آن می­توان از این باکتری­ها در کنترل زیستی بیمارگرهای گیاهان بهره برده و آن را جایگزین مناسبی برای کنترل شیمیایی نمود.

کلیدواژه‌ها

موضوعات


Akg ul, D. & Ahio˘glu, M. 2019. Fungal pathogens associated with young grapevine decline in the southern Turkey vineyards. Proceedings of the 42nd world congress of vine and wine, 15–19 July, Geneva, Switzerland, 01027.
Akbari Kiarood, S., Kamran, R., Golmohammadi, M. & Nasrollahnejad, S. 2020. Molecular identification of citrus endophytic bacteria in the east of Guilan province, Iranian Journal of Plant Protection Science, 51:  27–37. (In Persian with English summary)
Aleynova, O., Suprun, A., Nityagovsky, N., Dubrovina, A. & Kiselev, K. 2021. The influence of the grapevine bacterial and fungal endophytes on biomass accumulation and stilbene production by the in vitro cultivated cells of Vitis amurensis Rupr. Plants, 10: 1276.
Alijani, Z., Amini, J., Ashengroph, M. & Bahramnejad, B. 2020. Isolation of strawberry endophytic bacteria and investigation of their antifungal effects on Colletotrichum nymphaeae, the causal agent of strawberry anthracnose, Biocontrol in Plant Protection, 8: 29–46. (In Persian with English summary)
Arzanlou, M. & Narmani, A. 2015. ITS sequence data and morphology differentiate Cytospora chrysosperma associated with trunk disease of grapevine in northern Iran. Journal of Plant Protection Research, 55: 117–125.
Asghari, S., Harighi, B., Mozafari, A.A., Esmaeel, Q. & Barka, E.A. 2019. Screening of endophytic bacteria isolated from domesticated and wild growing grapevines as potential biological control agents against crown gall disease. BioControl, 64: 723–735.
Balan, S.S., Nethaji, R., Sankar, S. & Jayalakshmi, S. 2012. Production of gelatinase enzyme from Bacillus spp. isolated from the sediment sample of Porto Novo Coastal sites. Asian Pacific Journal of Tropical Biomedicine, 2: 1811–1816.
Bashan, Y. & Holguin, G. 1998. Proposal for the division of plant growth promoting Rhizobacteria into two classifications: biocontrol–PGPB (plant growth–promoting bacteria) and PGPB. Soil Biology Biocheimistry, 30: 1225–1228.
Castro, R., Quecine, M., Lacava, P., Batista, B., Luvizotto, D. & Marcon, J.  2014. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. Springer Plus, 3: 382–391.
Compant, S. & Mathieu, F. 2017. Biocontrol of major grapevine diseases. Leading Research, CABI, Wallingford, UK.
Compant, S., Mitter, B., Colli–Mull, J., Gangl, H. & Sessitsch, A. 2011. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microbial Ecology, 62: 188–197.
Costa, L., Queiroz, M., Borges, A., Moraes, C. & Araújo, E. 2012. Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Brazilian Journal of Microbiology, 43: 1562–1575.
Ebrahimi, A., Asgharian, S. & Habibian, S. 2010. Antimicrobial activities of isolated endophytes from some Iranian native medicinal plants. Iranian Journal of Pharmaceutical Sciences, 6: 217–222.
Fatima, N., Mukhtar, U., Ihsan–Ul–Haq, M., Jadoon, M. & Ahmed S. 2016. Biological evaluation of endophytic fungus Chaetomium sp. NF15 of Justicia adhatoda L.: A potential candidate for drug discovery. Jundishapur Journal of Microbiology, 9:e29978.
Fotouhifar, K., Hedjaroude, G. & Leuchtmann, A. 2010. ITS rDNA phylogeny of Iranian strains of Cytospora and associated teleomorphs. Mycologia, 102: 1369–82.
Hankin, L. & Anagnostakis, S.L. 1975. The use of solid media for detection of enzyme production by fungi. Mycologia, 67: 597–607.
Jiménez–Gómez, A., Saati–Santamaría, Z., Kostovcik, M., Rivas, R., Velázquez, E., Mateos, P.F., Menéndez, E. &  García–Fraile, P. 2020. Selection of the root endophyte Pseudomonas brassicacearum CDVBN10 as plant growth promoter for Brassica napus L. Crops. Agronomy, 10:1788.
Khan, A., Hamayun, M., Kang, S., Kim, Y., Jung, H. & Lee, J. 2012. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiology, 12: 3.
Khan, N., Martínez–Hidalgo, P., Maymon, M., Humm, EA., Nejat, N., Sanders, E.R., Kaplan, D. & Hirsch, A.M. 2018. Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Frontiers in Microbiology, 9: 23–63.
Kobayashi, D. & Palumbo, J. 2000. Bacterial endophytes and their effects on plants and uses in agriculture. In: C. W. Bacon & J. F. White (Ed), Microbial Endophytes, 99–233.
Liu, H., Carvalhais, L., Crawford, M., Singh, E., Dennis, P., Pieterse, C. & Schenk, P. 2017. Inner plant values: diversity, colonization and benefits from endophytic bacteria. Frontiers in Microbiology, 8: 25–52.
Liu, M., Liu, X., Cheng, B., Ma, X., Lyu, X., Zhao, X., Ju, Y., Min, Z. & Fang, Y. 2016. Selection and evaluation of phosphate–solubilizing bacteria from grapevine rhizospheres for use as biofertilizers. Spanish Journal of Agricultural Research, 14: e1106.
Mondello, V., Spagnolo, A., Larignon, P., Clément, C. & Fontaine, F. 2019. Phytoprotection potential of Fusarium proliferatum for control of Botryosphaeria dieback pathogens in grapevine. Phytopathologia Mediterranea, 58: 293–306.
Moreira, R., Nesi, C. & De Mio, L. 2014. Bacillus spp. and pseudomonas putida as inhibitors of the Colletotrichum acutatum group and potential to control Glomerella leaf spot. Biological Control, 72: 30–37.
Pacifico, D., Squartini, A. & Crucitti, D. 2019. The role of the endophytic microbiome in the grapevine response to environmental triggers. Frontiers in Plant Science, 10:1256.
Pinto, C., & Gomes, A.C. 2016. Vitis vinifera microbiome: from basic research to technological development. BioControl, 61: 243–256.
Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M. L., Gandolfi, C., Casati, E., Previtali, F., Gerbino, R., Pierotti, C. F., Borin, S., Sorlini, C., Zocchi, G. & Daffonchio, D. 2015. Improved plant resistance to drought is promoted by the root–associated microbiome as a water stress–dependent trait. Environmental Microbiology, 17: 316–331.
Santoyo, G., Moreno–Hagelsieb, G., Orozco–Mosqueda, M. & Glick, B.  2016. Plant growth–promoting bacterial endophytes. Microbiological Research, 183: 92–99.
Schaad, N.W., Jones, J.B. & Chun, W. 2001. Laboratory guide for identification of plant pathogenic bacteria. 3rd ed. St. Paul, MN: APS press. 373 P.
Schulz, B. & Boyle, C. 2006. What are endophytes? pp.1–13. In: Schulz B, Boyle C and Sieber T.N (eds). Microbial Root Endophytes, Springer–Verlag, Berlin.
Silva–Valderrama, I., Toapanta, D., Miccono, M.A., Lolas, M., Díaz, G.A., Cantu, D. & Castro, A. 2021. Biocontrol potential of grapevine endophytic and rhizospheric fungi against trunk pathogens. Frontiers in Microbiology, 11: 614–620.
Tille, P. & Forbes, B. 2014.  Bailey & Scott’s diagnostic microbiology (Thirteenth edition.). St. Louis, Missouri: Elsevier.
Turner, T., James, E. & Poole, P. 2013. The plant microbiome. Genome Biology, 14.
Wang, H., Zhang, Y, Chen, J., Guo, J., Li, L., Hozzein, W., Zhang, Y., Wadaan M. & Li W. 2015. Frigoribacterium endophyticum sp. nov., an endophytic actinobacterium isolated from the root of Anabasis elatior (C. A. Mey.) Schischk. International Journal of Systematic and Evolutionary Microbiology, 4: 1207–1212.
West, E., Cother, E., Steel, C. & Ash, G. 2010. The characterization and diversity of bacterial endophytes of grapevine. Canadian Journal of Microbiology, 56:209–216.
William, S. & Helene Feil, A. 2004. Bacterial genomic DNA isolation using CTAB. DOE Joint Genome Institute, Walnut Creek, California.
Zarraonaindia, I. & Gilbert, J. 2015. Understanding grapevine–microbiome interactions: implications for viticulture industry. Microbial Cell, 2: 171–173.